# ProbSetFive - Rensselaer Electrical Computer and Systems...

This preview shows pages 1–3. Sign up to view the full content.

Rensselaer Electrical, Computer, and Systems Engineering Department ECSE 4500 Probability for Engineering Applications PS#5 Solutions March 15, 2010 1. (3.4) Method (1): For y> 0 P [ Y y ]= P [ e X y P [ X ln y F X (ln y ) . Hence f Y ( y )= dF X (ln y ) dy = dF X (ln y ) d ( lny ) d (ln y ) dy = 1 y f X (ln y ) . For y 0 P [ Y y P [ e X y P [ φ ]=0 . Hence f Y ( y 1 2 πσy exp[ 1 2 ( ln y μ σ ) 2 ] u ( y ) . Method (2): A plot of y = g ( x ) is The only solution to y g ( x )=0 is x =ln y ,for 0 f Y ( y r X i =1 f X ( x i ) | g 0 ( x i ) | = f X (ln y ) /e x | x =ln y . y 0 , there is no real solution to y g ( x ; hence for y 0 ,thepd fo f Y equals zero there. Combining solutions for both regions of y ,weget f Y ( y f X (ln y ) /y · u ( y ) . 2. (3.5) Method (1): P [ Y y P [ln X y P [ X e y F X ( e y ) f Y ( y dF d ( e y ) d ( e y ) dy = f X ( e y ) e y = 1 3 e 1 3 e y u ( e y ) e y 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
But since e y 0 all real y , u ( e y )=1 everywhere. Hence f Y ( y )= 1 3 e 1 3 [exp( y ) 3 y ] Method (2): We plot y = g ( x ) f rst. The only solution to y g ( x )=0 is x =ln y for −∞ <y< . Hence f Y ( y f X ( e y ) dg/dx | x = e y = f X ( e y ) · e y 3. (3.6) Here is the plot of
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 5

ProbSetFive - Rensselaer Electrical Computer and Systems...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online