b09exam4sol

b09exam4sol - ECE2311 EXAM # 4 B09 Name : Mia-:2” ECE Box...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE2311 EXAM # 4 B09 Name : Mia-:2” ECE Box Number: ______________ \ Clearly write the final answer on the line provided on the exam sheets. When you finish your exam7 be sure that your name and ECE box number is on this sheet and turn in this entire exam with the answers placed where requested. Problem 1 — Fourier Transform Integral 1a) Obtain the Fourier transform of the function x(t) = 56‘3tu(t — 1) by evaluating the intergral for the Fourier Transform (Le. do not use the table method or Fourier properties). Show all work. 0:) 7‘” 00 -‘w‘fi — -Y‘f: ' f ’ Ylw) ’* )ixt’fle ’ d“. ‘ J58 e“’on— = Cfe‘czrflyedi. (OK) I l , - ~ - flu) - 5* e"(’wm 00. 5‘ o'e‘oml : 5'8 3'8 I ‘ ' ,‘wq' ” for/“*3 jw+3 ‘e ,qu) —(9,°"+3) 59' 2 re Xe) : #__.L03_________ 1b) Obtain the Fourier transform of the function y(t) 2 u(t+ l) —u(t — 1) by evaluating the intergral for the Fourier Transform (i.e. do not use the table method). Show all work. W l l , r , , r t NH” 5”“- e’” 6 flour 3 v)” = C...— 1 Xau) IKE)? all e 6“? [7w '2’“) ’90 v! l _' 2; 3% (V) 25.3 (V) N 1w ‘0 (jaw—e ’ 1:04 (a) v . 1' ’77—; Y(w) = 9‘“) _ Problem 2 A Fourier Transform Tables and Properties 2a) Obtain the Fourier transform of the function x(t) 2 6t2e_2tu(t) +46 (t —— 1) by using the provided tables of Fourier transforms and Fourier transform properties . Show all work. 1%) : ()file'ltudfl + We-» / \ -n é.21 :12 a ("naval3 (Two’le I .1!) IL " +46 X(w) = _. ..(.. L_*3“’_)_E 2b) Obtain the Fourier transform of the function y(t) 2: 6‘2‘u(t) * e2‘u(—t) by using the provided tables of Fourier transforms and Fourier transform properties . Show all work. , Li“ "drum ’64 e uf'i‘l EH)”; e Problem 2 — Fourier Transform Tables and Properties 2a) Obtain the Fourier transform of the function :56) = 6tze“2‘u(t)+46(t— 1) by using the provided tables of Fourier transfimrns and Fourier transform properties . Show all work. 7/“ : 6tle'ltufl') + #SR-t) / '\ w the 2b) Obtain the Fourier transform of the function y(t) : e”2iu(t) * e2‘u(—t) by using the provided tables of Fourier transforms and Fourier transform properties . Show all work. ,‘L+ g Lf (wt) f Z Z. 1‘; M) 1.4!») ’ x a r i, \/(‘V\ Iv (’21—;&J>’(/2.*JQB * $14.11 ‘i i ——-j:"‘“"1“1‘ « ; YOU): aha/Vlvii (a +V ’- Problem 3 — More Fourier Transform Properties Use the basic properties of the Fourier Transform to find the following transforms. 3a) Let x(t) 2 8‘21”. Then its Fourier transform is given by .7-"[a:(t)] : X(s) = “flip If y(t) : 3:1:( then its Fourier transform is given by: 9 Mr W 2:) 3 ’4 Lav em = Exec] a 3 {3| MW) ; axe/(m) 9”)” were a eme‘w : 7 wme'w , -7;ch , «2nd ‘, . Ym = or." ’8 ~ .363 (ECLAL‘H-f (aw-L +L’ -2414) ?é €___, 0, U? 1 LI 3b) Let x(t) : 6"”. If y(t) :2 (21722536) then its Fourier transform is given by: _tz/ZG—2 _—— A14 6”. From» Jaw fiIMzw/«Ww: C HOW/3713 :1 a 7/47) a 0%.We‘zi—i :JFQ “if 'L f I ' 9R” ,— oqtflr—a (W) XEA *3 “(we wteomfw MC1 -52" Va»: ~ wLVTTT‘f-f " , 'L -v‘\/7€'¥ 30) Let = 64"”. If y(t) ‘2 a:(t)ej30‘ then its Fourier transform is given by: 0‘ M ; e—E’H .4?) >61») =47? ' $— 9M a 7cm e’“ a X/w‘uai - OI ..«,. “ELM ' (wadxxuyq cal— 60:.) +5107 4 a “1—! 3b) Let $(t) : 642. If y(t) = $226) then its Fourier transform is given by: -14} Frau—y 4J1; ‘H #5111 We WW )(l‘u)? V?— e 7. dc ~ L‘JZ‘ 7:8,” W'L 3c) Let; z(t) : 6—3;“- If y(t) = $(t)ej3°‘ then its Fourier transform is given by: ‘ ‘X 7C/q :/ Q'KHA érfi ‘vzjyfi "10+ 914:) ’1 761+)e) X/U’UOB _ "I __ q (w,3d\t+q 5.1% bag-M07 ,Lm. r.in Hm («Jami-+4 W’sou‘r‘im yt = __ "fin—- 3d) Let x(t) : L What is the Fourier transform of :c(t) given by? 3+jt' 413% La “kiwi—a Ylu) VA», YIiJé—% 7n7¢/_w) -31‘: g M( é—é " J 3+Ju ? {are :2—9 ZTT e M "V J Problem 4 e Inverse Fourier Transforms Use the basic properties of the Fourier Transform and the Fourier tables to find the following inverse transforms. 4a) X(w) : 1+ 61"” ~ 6‘23” 4b) X(w) = 46”?“ 64—3jw g2» L/ Q I i 8—21'W’ I WT... : 3 2~3U 6 ng‘u W 7 885(41th “Ki/3514M: “r 2“ ’73 (2* “A ’3' 6 awe—03 : fie a (we) f'1[X(w)] = ____ Problem 4 — Inverse Fourier Transforms Use the basic properties: of the Fourier Transform and the Fourier tables to find the following inverse transforms. ‘ 5H) +5695) ~5/t'l) W E E, I l y la) Lt e 1 ’ §f_€“lj‘~” ’1‘) ' 2—) 6 PZJV W 7 sum/«Q ifiégbljmc "£925 4* 2‘ (1+ “0 rim»): E 6— L‘ (’(‘e"‘)\) : Zie “(1%) ...
View Full Document

Page1 / 11

b09exam4sol - ECE2311 EXAM # 4 B09 Name : Mia-:2” ECE Box...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online