Hong, Zheng HW9

# Hong, Zheng HW9 - CNETzhengh HW9 Zheng Hong November 30,...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CNETzhengh HW9 Zheng Hong November 30, 2009 Contents 1 mean-reverting, square-root diffusion 2 2 Simulate a solution to the SV-SDE 2 1 1 mean-reverting, square-root diffusion Set X ( t ) = V + 0 . 5 R t e v ( s ) / 2 ( v dW v )( s ) Then, dX ( t ) = 0 . 5 e v ( t ) / 2 v ( t ) dW v ( t ). Set Y ( t ) = X 2 ( t ), g = 0 . 5 e v ( t ) / 2 v ( t ), f = 0, Then, according to the Chain Rule for Diffusion, dY ( t ) dt = 1 2 g 2 * 2( X ( t ) ,t ) dt + ( g * 2 X )( X ( t ) ,t ) dW v ( t ) That is, dY ( t ) dt = 1 4 e v ( t ) 2 v ( t ) dt + e v ( t ) / 2 v ( t ) X ( t ) dW v ( t ) Next, let V ( t ) = F ( Y ( t ) ,t ) = e- v ( t ) Y ( t ), applying the Chain Rule for Diffusion, dV ( t ) dt = ( F t + f F y + 1 2 g 2 F yy )( Y ( t ) ,t ) dt + ( g F y )( Y ( t ) ,t ) dW v ( t ) =- v Fdt + 1 4 e v ( t ) 2 v ( t ) e- v ( t ) dt + e v ( t ) / 2 v ( t ) X ( t ) e- v ( t ) dW v ( t ) =- v V ( t ) dt + 1 4 2 v ( t ) dt + e- v ( t ) / 2...
View Full Document

## Hong, Zheng HW9 - CNETzhengh HW9 Zheng Hong November 30,...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online