Hong, Zheng HW7 - CNETzhengh HW7 Zheng Hong Contents 1...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
CNETzhengh HW7 Zheng Hong November 16, 2009 Contents 1 Simulate the Normal-Uniform Hybrid Mark 2 2 correlated diffusion differentials 2 3 the Black-Sholes PDE problem 3 4 The Greeks (Sensitivity Coefficients) 3 5 Black-Scholes European Option Pricing 4 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1 Simulate the Normal-Uniform Hybrid Mark -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0 2 4 6 8 10 12 14 16 18 Figure 1: Q(q) mean(Q)=13.0114, standard deviation(Q)=3.9836, skewness(Q)=-0.8365, kurtosis(Q)=2.5464 Matlab Codes: clc; clf; a = -0.0947;b = 0.1096; mu = 2.448e-4;sigma=1.121e-2;pu=0.6; k=1; qq=zeros(1,5000); q=normrnd(mu,sigma,1,10000); for i=1:10000 if q ( i ) < = b N q ( i ) > = a N k < = 5000 qq(k)=q(i) k=k+1 end end c = numeric ( int ( exp ( - t 2 / (2 * sigma 2 )) ,a - mu,b - mu )); phiQ = pu/ ( b - a ) + (1 - pu ) * exp ( - ( qq - mu ) . 2 / (2 * sigma 2 )) /c ; bar(qq,phiQ) 2 correlated diffusion differentials (a) dW b ( t ) dW s ( t ) dt = ρ ( t ) dt ; dW p ( t ) dW s ( t ) dt = 0; dW b ( t ) dW s ( t ) = ( α ( t ) dW s ( t ) + β ( t ) dW p ( t )) dW s ( t ) dt = α ( t )( dW s ( t )) 2 = α ( t ) dt ; α ( t ) = ρ ( t ); 2
Background image of page 2
(b) Since dW p ( t ) is uncorrelated with dW s ( t ), Δ W m p ( t W n s ( t ) = 0 E [(Δ W b ) 2 ( t )(Δ W s ) 2 ( t )] = E [( αdW s + βdW p ) 2 ( t )(Δ W s ) ( t )] = E [ α 2 ( t W 4 s ( t )] = ρ 2 ( t ) Z -∝ 1 2 π Δ t e - t
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 7

Hong, Zheng HW7 - CNETzhengh HW7 Zheng Hong Contents 1...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online