Hong,Zheng HW3

# Hong,Zheng HW3 - CNETzhengh HW3 Zheng Hong Contents 1...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CNETzhengh HW3 Zheng Hong October 19, 2009 Contents 1 Finance Oriented Martingales 2 2 Exponential Martingale 2 3 Trigonometric Ito Integral 3 4 Solve diffusion SDE 3 5 Square Root Noise Problem 4 1 1 Finance Oriented Martingales (a) Proof: M 1 ( t ) = LnX ( t )- E [ Ln ( X ( t ))], dX ( t ) = X ( t )( μ ( t ) dt + σ ( t ) dW ( t )); Y ( t ) = LnX ( t ); dY ( t ) = ( μ ( t )- 1 2 σ 2 ( t )) dt + σ ( t ) dW ( t ); Y ( t ) = LnX ( t ) + R t t ( μ ( s )- 1 2 σ 2 ( s )) ds + R t t σ ( s ) dW ( s ); E [ dY ( t )] = ( μ ( t )- 1 2 σ 2 ( t )) dt ; M 1 ( t )- M 1 ( s ) = [ Y ( t )- Y ( s )]- E [ Y ( t )- Y ( s )] = Z t s ( μ ( x )- 1 2 σ 2 ( x )) dx + Z t s σ ( x ) dW ( x )- E [ Z t s ( μ ( x )- 1 2 σ 2 ( x )) dx + Z t s σ ( x ) dW ( x )] = Z t s σ ( x ) dW ( x )- E [ Z t s σ ( x ) dW ( x )] (1) So, M 1 ( t )- M 1 ( s ) and M 1 ( s ) are independent. E [ M 1 ( t ) | M 1 ( s )] = E [ M 1 ( t )- M 1 ( s ) | M 1 ( s )] + M 1 ( s ) = M 1 ( s ); That means, M 1 ( t ) is a martingale.) is a martingale....
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

Hong,Zheng HW3 - CNETzhengh HW3 Zheng Hong Contents 1...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online