{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Class5 - Class 5 Illumination and Shading HW4...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Class 5 Illumination and Shading HW4 Ulrich Neumann CS580 (Computer Graphics Rendering)
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Illumination and shading Illumination (lighting) and shading models simulation of light interactions with scene light sources, geometry, propagation, interaction with surfaces, imaging process in camera
Image of page 2
Shading Examples Images courtesy of Watt, Watt & Watt, and Foley & van Dam
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Global versus Local Illumination 2 P 1 P Indirect Illumination Direct Illumination
Image of page 4
Global versus Local Illumination Global Illumination Considers indirect illumination Reflection Refraction Shadows Local Illumination Only considers direct illumination No reflection No refraction Simple shadows possible
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Global versus Local Illumination Images courtesy of Foley & van Dam, Computer Graphics We start with simple local illumination and then extend those concepts/models to global illumination
Image of page 6
Radiance Radiance: Power per unit projected source area (A) perpendicular to the ray, per unit solid angle in the direction of the ray dA N the approximation holds for small A and Ω , L is the radiance ( W · m -2 · sr -1 ), Φ is the radiant flux or power ( W ), θ is the angle between the surface normal and the specified direction, A is the area of the source ( m 2 ), and Ω is the solid angle ( sr ).
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Light Source Radiant Intensity Radiant Intensity per steradian Ie(x) = power/sr (Watts/steradian) constant in vacuum at all distances Solid angle sr = surface area (a) of portion of sphere divided by r 2 , sr = a/r 2 Area of sphere surface = 4 pi r 2 sr = (4pi r 2 )/r 2 , sr = 4pi steradians over sphere - independent of radius Ie is constant for fixed solid angle (at any distance) J = We = Watt/m 2 Radiosity or Power Density falls off with square of distance
Image of page 8
Light Intensity Ie
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern