07_M_GOLD_9004_12_ch06-1

# 07_M_GOLD_9004_12_ch06-1 - Chapter 6 The Definite Integral...

This preview shows pages 1–4. Sign up to view the full content.

174 Chapter 6 The Definite Integral 6.1 Antidifferentiation 1. () 2 1 2 fx x Fx x C =⇒ = + 2. 29 9( ) f x x F xxC = + 3. 33 1 3 xx fx e Fx e C = + 4. 1 3 e C −− = + 5. f ( x ) = 3 F ( x ) = 3 x + C 6. 2 4( ) 2 fx x Fx =− + 7. 34 4 xd x x C =+ 8. 2 11 336 x dx xdx x C == + ∫∫ 9. 77 dx x C 10. 22 kd x kx C 11. 2 2 x dx xdx x C cc c + 12. 23 4 1 4 xxd x x ⋅= 13. 2 21 1 2 2 2 1 2ln 4 x dx x dx dx xdx x C ⎛⎞ += + ⎜⎟ ⎝⎠ + 14. 1 1 ln 777 dx dx x C =⋅ = + 15. 32 52 2 5 d x x d x x C + 16. 12 2 2 4 4 3 4 4 3 x x x x x x d x C C += + + + 17. 2 1 2 3 121 ln 233 d x d x xdx x dx dx x x C −+ =−+ + + 18. 31 3 3 3 3 24 3 3 2 2 7 2 71 1 1 1 3 73 44 x x x d x x x xd x C C −= + + + 19. 3 3 2 ed x e C + 20. x e C + 21. edx ex C 22. 2 7 2 x dx e dx e C e + 23. ( ) 2 2 2 2 1 1 2 2 x x e dx e dx dx ex C C −+= + + 24. .5 .5 2. 5 5 2 1 2 3 5 3 x x e d x x x d x x eC + + + 25. 2 5 25 2 tt t d ke ke e k dt ⎡⎤ = ⇒ =− ⎣⎦ 26. /10 1 0 10 t d ke ke e k dt = 27. 41 1 42 2 x d ke ke e k dx =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Section 6.1 Antidifferentiation 175 28. (3 1) (3 1) 31 (3 1) (3 1) 3 4 34 3 xx x dk d ke ke dx dx e ke e k −+ + ⎡⎤ == ⎢⎥ ⎣⎦ −=⇒ = 29. 12 22 (5 7) (5 7) (5) 5( 5 7 ) ( 5 7 ) 1 5 d kx dx x k −− −= =− = 30. 3/2 1/2 3 (1 ) ) ) 2 2 3 d x dx k += + = + = 31. 1 ln 4 ( 1) 44 4 1 k dx x x x k ⎡− = ==⇒ 32. 3 3 4 (8 ) (8 ) 3( 8 ) (1 ) 3 ( 8) 7 ( 8) 7 3 d dx dx x x k =−= −⇒ = 33. 54 (3 2) 5 (3 2) (3) 15 (3 2) (3 2) 1 15 d dx x k + =+ = + = 34. 43 3 (2 1) 8 (2 1 8 d x dx k = = 35. 3 [l n2 ] 3 k dx x x = ⇒= ++ 36. ln 2 3 ( 3) 23 35 5 23 23 3 dx x k k = = 37. 5/2 2 () 5 ft t f t t C =⇒= + 38. 4 () 4ln6 6 ft f t t C t + + + 39. () 0 f =⇒ = 40. 2 15 5 7 7 32 t f t t t tC =−−⇒ = − −+ 41. .2 .2 .2 0 () . 5 2 . 5 (0) 0 2.5 0 2.5 fx e e C fe C C −⋅ = + + =⇒ = Thus, .2 2 . 5 2 . 5 . x e + 42. 2 20 () 2 (0) 1 0 1 0 xe fx x e C C C =− ⇒ =+ + =⇒ + Thus, 2 . x 43. 2 1 2 fx x fx x C = + 2 1 (0) 3 0 3 3 2 fC C =⇒⋅ + =⇒ = Thus, 2 1 3 2 x . 44. 1/3 4/3 () 8 () 6 (1) 4 6 1 4 2 x x C C = + =⇒⋅ Thus, 2 x . 45. 2 1 3 2 (4) 0 4 4 0 3 8 84 0 33 fx x x xC CC = + + ++ =⇒ ⋅++ = ⇒ =− Thus, 8 x x . 46. 2 3 / 2 3 1 1 3 2 fx x x x x C C = + + =⇒⋅ +⋅ Thus, / 2 2 x x + . 47. 2 2 l n d x x ==+ 2 2 ln 1 2 2 C Thus, l n 2 . x 48. 11 d x + 1 (6) 3 (6) 3 1 3 C Thus, 1 1 . 3 x
176 Chapter 6 The Definite Integral 49. () 2 11 ln ln (ln 1) 1 ln d Cx dx x x d xxxC x x dx ⎛⎞ += −≠ ⎜⎟ ⎝⎠ −+ = +−= 2 1l n (ln ) ln 2 dx xC x dx x The answer is (b). 50. 5/2 3/2 1/2 22 (1 ) ) 53 ) ) 1( 1 1) 1 d xx C dx x x +− ++ =+ −+ =++ = + 23 / 2 2 12 ) 21 ) ) 1 32 d C dx x x ⋅+ + + + + The answer is (a). 51. 52. 53. g ( x ) = f ( x ) + 3 1 () ( 5 ) ( 5 ) 4 gx f x g f =⇒== ′′ 54. h ( x ) = g ( x ) – f ( x ) = f ( x ) + 2 – f ( x ) = 2 () 0 hx = 55. a. 2 (96 32 ) 96 16 td t t t C −= + The initial height is 256 feet, so C = 256. Thus, 2 ( ) 16 96 256 st t t =− + + . b. Setting s ( t ) = 0, 2 16 96 256 0 tt 2 61 60 −−=⇒ ( t – 8)( t + 2) = 0. The only solution that is sensible is t = 8 seconds.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 04/24/2010 for the course MATH 9374 taught by Professor Smith during the Spring '10 term at University of California, Berkeley.

### Page1 / 24

07_M_GOLD_9004_12_ch06-1 - Chapter 6 The Definite Integral...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online