11-Lect-Pressure Drop in Reactors0

# Evaluate 1 w 1 2 dw fa 0 dx 23 b 1 3 krtca 0

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: dX 2 2 kCA 0 (1 − X ) [1 − αW ] € € F dX [1 − αW ] dW = 2 A 0 2 kCA 0 (1 − X ) Integrating gives: ȹ α ȹ F X υ X W ȹ 1 − W ȹ = A20 =0 ȹ 2 Ⱥ kCA 0 (1 − X ) kCA 0 (1 − X ) € When ε = 0, we can solve the pressure drop DFQ by separation of variables, substitute y into the dW/dF DFQ and solve. Solving for W or X gives: Ⱥ kC W ȹ α ȹȺ kC W ȹ α ȹ X = A 0 ȹ 1 − W ȹ 1 + Ⱥ A 0 ȹ 1 − W ȹȺ ȹ 2 Ⱥ υ0 € Ⱥ υ 0 ȹ 2 ȺȺ Pressure Drop in Reactors W= 1 − {1 − [(2υ 0α ) kCA 0 ][ X (1 − X )]} 1/ 2 α Lecture 11 - Page 13 Chemical Reaction Engineering - Musgrave € € 5. Evaluate dW = FA 0 dX 2/3 Ⱥ ȹ b ȹ Ⱥ 1/ 3 ȹ Θ B − X ȹ Ⱥ Ⱥ Ⱥ Ⱥ (1 − X ) P ȺC ȹ a Ⱥ P Ⱥ kRTȺCA 0 Ⱥ (1 + εX ) P0 Ⱥ Ⱥ A 0 (1 + εX ) P0 Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ Ⱥ εX Negligible y= α≡ P 1/ 2 = [1 − αW ] P0 2β 0 If ε is zero or εX negligible,then: € (1 − φ ) Ac ρc P0 € dW = kRT FA 0 dX 2/3 P b ȹ 1 / 3 ȹ CA 0 (1 − X ) ȹ Θ B − X ȹ ȹ P0 a Ⱥ € only valid for εX ~0 And using the definition of y: € dW = kRTCA 0 [1 − αW ] FA 0 dX 1/ 2 (1 − X ) 1/ 3 2/3 ȹ b ȹ ȹ Θ B − X ȹ ȹ a Ⱥ Separating variables: € Pressure Drop in Reactors [1 − αW ] 1/ 2 dW = FA 0 dX 2/3 b ȹ 1 / 3 ȹ kRTCA 0 (1 − X ) ȹ Θ B − X ȹ ȹ a Ⱥ Lecture 11 - Page 14 Chemical Reaction Engineering - Musgrave € 7 5. Evaluate [1 − αW ] 1/ 2 dW = FA 0 dX 2/3 b ȹ 1 / 3 ȹ kRTCA 0 (1 − X ) ȹ Θ B − X ȹ ȹ a Ⱥ For A+ 1/2B → C we have b = 1/2, and ΘB is given as 1/2 so: € [1 − αW ] Integrating gives: 1/ 2 dW = 2 FA 0 dX kRTCA 0 (1 − X ) € 2 2 FA 0 32 1 − αW ) = ln(1 − X ) 2( α kRTCA 0 Solving for W or X gives: Ⱥ €1 1 Ⱥ α 2 FA 0 W = − Ⱥ ln(1 − X )Ⱥ α α Ⱥ kRTCA 0 Ⱥ Pressure Drop in Reactors 23 Ⱥ kRTCA 0 3 2 Ⱥ X = 1 − expȺ (1 − αW ) Ⱥ FA 0α 2 Ⱥ Ⱥ Lecture 11 - Page 15 Note: ε is -1/2 and εX is negligible only for small X! Chemical Reaction...
View Full Document

## This note was uploaded on 04/25/2010 for the course CHEN 4330 taught by Professor Staff during the Spring '08 term at Colorado.

Ask a homework question - tutors are online