class16 - PHYS 5900 Class 16 (9/30/2009) Zi-Wei Lin...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
PHYS 5900 Class 16 (9/30/2009) Zi-Wei Lin Two-Dimensional Forms with Built-in Meanings include x y power x y division x square root x n nth root ± i = i1 i2 f i sum ² i = i1 i2 f i product ³ f ± x or ³ a b f ± x integral x f or x , y f partial derivative Using Two-Dimensional Notations Example 2.5.1 In[1]:= ± v_ : = ¶ x v * i + ¶ y v * j + ¶ z v * k In[2]:= Φ @ x_, y_, z_ D : = k q x 2 + y 2 + z 2 In[3]:= -±Φ @ x, y, z D Out[3]= k q x i I x 2 + y 2 + z 2 M 3 ± 2 + k q y j I x 2 + y 2 + z 2 M 3 ± 2 + k q z k I x 2 + y 2 + z 2 M 3 ± 2 In[4]:= % ±± Factor Out[4]= k q J x i + y j + z k N I x 2 + y 2 + z 2 M 3 ± 2 In[5]:= Clear @ Φ , Del D
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Input and Output Forms include InputForm OutputForm StandardForm TraditionalForm Global settings can be done at Edit/Preferences/Evaluation (on Windows) or Mathamatica/Preferences/Evaluation (on Mac). Local settings can be done by Cell/ConvertTo or using the commands: Example: x 3 Sin @ x D 2 + 2 + ± f @ x D ± x In[6]:= myExpr = x^3 ± H Sin @ x D ^2 + 2 L + Integrate @ f @ x D , x D Out[6]= ² f @ x D ± x + x 3 2 + Sin @ x D 2 In[7]:= myExpr ±± InputForm Out[7]//InputForm= Integrate[f[x], x] + x^3/(2 + Sin[x]^2) In[8]:= myExpr ±± OutputForm Out[8]//OutputForm= 3 x Integrate[f[x], x] + ----------- ---------- 2 2 + Sin[x] In[9]:= myExpr ±± StandardForm Out[9]//StandardForm= ² f @ x D ± x + x 3 2 + Sin @ x D 2 In[10]:= myExpr ±± TraditionalForm Out[10]//TraditionalForm= ± f H x L ± x + x 3 sin 2 H x L + 2 In[11]:= Clear @ myExpr D 2 class16.nb
Background image of page 2
StandardForm includes whatever can be entered in InputForm . It's easier to debug in InputForm than StandardForm . Warning: TraditionalForm gives the traditional mathematical notation but often lacks the necessary precision for input. Example: In[12]:= 8 S @ 1 + Α D , FresnelS @ 1 + Α D , S * H 1 + Α L< ±± StandardForm Out[12]//StandardForm= 8 S @ 1 + Α D , FresnelS @ 1 + Α D , S H 1 + Α L< In[13]:= 8 S @ 1 + Α D , FresnelS @ 1 + Α D , S * H 1 + Α L< ±± TraditionalForm Out[13]//TraditionalForm= 8 S H Α + 1
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/25/2010 for the course PHYS 5900 taught by Professor Lin during the Fall '09 term at East Carolina University .

Page1 / 9

class16 - PHYS 5900 Class 16 (9/30/2009) Zi-Wei Lin...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online