{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

homework12-solutions

# homework12-solutions - Homework 12 Extra Problems –...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Homework 12: Extra Problems – Solutions 1 The partial differential equation u t = au x is known as the transport equation (or sometimes the advection equation ). In this problem we’ll find solutions u ( x,t ) to this equation. In particular, we’ll include an initial condition and solve the initial value problem (IVP) ( * )    ∂u ∂t = a ∂u ∂x u ( x, 0) = f ( x ) . (a) Here is a graph of u = f ( x ) (an example initial condition for the IVP): ................................................................................................................................................................................................................................................................................................................................ . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u ................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................. • • • A B C This graph is of u ( x, 0) = f ( x ). Is the value of u x ( x, 0) positive, negative, or zero at the points x = A , x = B , and x = C ? Solution: This is simply asking: for the function u = f ( x ) graphed above, is f ( x ) positive, negative, or zero at the points x = A , x = B , and x = C ? From single-variable calculus, we know that f ( A ) > 0 while f ( B ) < 0 and f ( C ) < 0. Thus u x ( A, 0) > while u x ( B, 0) < 0 and u x ( C, 0) < 0. (b) If u ( x,t ) is a solution of the IVP labeled ( * ) for a > 0, what is the sign of u t ( x, 0) at the points x = A , x = B , and x = C ?...
View Full Document

• Spring '10
• Knill
• Constant of integration, Boundary value problem, Partial differential equation, ... ..., Picard–Lindelöf theorem

{[ snackBarMessage ]}

### Page1 / 4

homework12-solutions - Homework 12 Extra Problems –...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online