ME_446_-_Lec_10-Signal_Simulation

ME_446_-_Lec_10-Signal_Simulation - System Simulation...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: System Simulation 446-10 446- Prof. Neil A. Duffie University of Wisconsin-Madison Wisconsin- 10 Neil A. Duffie, 1996 All rights reserved 1 Utility of System Simulation Understanding system behavior - tests on actual system may be difficult - system may not yet exist in hardware Aid in design - answer "what if" questions - iterate to final system design - verify design before implementation Choice of simulation method 10 Correctness of models used 2 Spring-Mass-Damper System Spring- Massdamper c [N-s/m] [N2 mass M [kg] y(t) [m] spring k [N/m] x(t) [m] M d y(t) dy(t) +c + ky(t) = kx(t) 2 dt dt 1 d 2 y(t) 2 dy(t) + + y(t) = x(t) 2 n dt n dt 2 where n = 10 k M = c 2 kM 3 System Damping > 1: overdamped (unforced response not oscillatory) < 1: underdamped (unforced response is oscillatory) = 1: critically damped (unforced response not oscillatory) Two examples with n = 1.414 rad/s: = 0.3536 (underdamped) 10 = 1.0610 (slightly overdamped) 4 Obtaining Input-Ouput Response Input Solution of system equations with given input function for resulting output function: - yields explicit, exact output function - different solution each input function - difficult for all but simple input functions Time-based simulation of system: Time- formulation same for all input functions 10 - approximate solution based on time steps and numerical integration 5 Spring-Mass-Damper Solution Spring- Mass1 2 n (s2Y(s) - sy(0 - ) - y(0 - )) + 2 sY(s) - y(0 - ) + Y(s) = x(s) n ( ) For x(t) = 0 and initial conditions: mass position = 0.15 [m] mass velocity = 0 [m/s] 2 1 2 s Y(s) - 0.15s + (sY(s) - 0.15) + Y(s) = 0 2 n n 10 6 ( ) Spring-Mass-Damper Solution ( < 1) Spring- Mass( 2 s + 2 0.15 0.15(s + 2 n ) n n Y(s) = = 2 s 2 2s (s + n )2 + 1- 2 n 2 + + 1 n n ( ( ) ) Using table of Laplace transforms: y(t) = 0.15 1 1- 2 e - nt sin n 1- 2 t - ( ) 7 where = cos -1 10 Response Plot: x(t) = 0 [m], n = 1.414 [rad/s], = 0.3536 0.15 y(t) Displacement [m] 0.1 0.05 0 -0.05 0 1 2 3 4 5 6 7 8 9 10 10 Time [sec] 8 Spring-Mass-Damper Solution ( > 1) Spring- Mass( 2 s + 2 0.15 n n 0.15(s + 2 n ) Y(s) = = s 2 2s (s + a)(s + b) + + 1 2 n n where a,b = n n 2 - 1 Using table of Laplace transforms: 1 y(t) = 0.15 ( - a)e -at - ( - b)e -bt (b - a) ( ) 9 10 where = 2 n Response Plot: x(t) = 0 [m], n = 1.414 [rad/s], = 1.0610 0.14 y(t) Displacement [m] 0.12 0.1 0.08 0.06 0.04 0.02 0 0 1 2 3 4 5 6 7 8 9 10 10 Time [sec] 10 Spring-Mass Damper Simulation SpringState equations: 2 dy (t) 2 y(t) - y(t) = n x(t) - dt n dy(t) = y(t) dt Example: Euler integration with time step t 2 2 y (t + t) y (t) + n x(t) - y(t) - y(t) t n y(t + t) y(t) + y(t)t 10 11 Choice of Time Step t Choose time step so that t is shorter than the (significant) characteristic times of the system to be simulated. Characteristic times: - process and controller time constants - process delays - closed-loop system time constants closed- damped natural frequencies 1 1 c = = d n 1- 2 10 12 Spring-Mass-Damper Time Step Spring- Mass n = 1.414 [rad / s], = 0.3536 : d = n 1- 2 = 1.323 [rad / s] t << 1 = 0.756 [s] d n = 1.414 [rad / s], = 1.0610 : a,b = n n 2 - 1 = 2,1 1 1 1 1 t << min , = min , = 0.5 [s] a b 2 1 10 Use t = 0.01 [s]. Compare to t = 0.001 [s]. 13 Response Plot: x(t) = 0 [m], n = 1.414 [rad/s], = 0.3536 0.15 y(t) Displacement [m] 0.1 0.05 0 -0.05 0 1 2 3 4 5 6 7 8 9 10 10 Time [sec] 14 Response Plot: x(t) = 0 [m], n = 1.414 [rad/s], = 1.0610 0.14 y(t) Displacement [m] 0.12 0.1 0.08 0.06 0.04 0.02 0 0 1 2 3 4 5 6 7 8 9 10 10 Time [sec] 15 Position Control Simulation y(t) [m] x(t) [m] damper spring mass Actuator M [kg] c [N-s/m] k [N/m] [N t Integral control: x(t) = k c 0 (r(t) - y(t))dt x(t + t) x(t) + k c [r(t) - y(t)]t 2 2 y(t) - y(t) t y (t + t) y (t) + n x(t) - n y(t + t) y(t) + y(t)t 10 16 Underdamped System Step Response (overdamped process) 0.2 y(t) Displacement [m] 0.15 0.1 0.05 r(t) y(t) 0 0 1 2 3 4 5 6 7 8 9 10 10 Time [sec] 17 ...
View Full Document

This note was uploaded on 04/27/2010 for the course ME 446 taught by Professor Nd during the Spring '10 term at Universität für Bodenkultur Wien.

Ask a homework question - tutors are online