{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

lecture15

# lecture15 - Lecture 15 Triple Integrals June 4 2009 Lecture...

This preview shows pages 1–7. Sign up to view the full content.

Lecture 15: Triple Integrals June 4, 2009 Lecture 15: Triple Integrals

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Objectives 1 Compute triple integrals over rectangular boxes. 2 Compute triple integrals over more general regions. 3 Use triple integrals to compute volumes. 4 Use triple integrals to compute centers of mass. Lecture 15: Triple Integrals
Triple integrals over boxes Suppose R = [ a , b ] × [ c , d ] × [ r , s ] is a rectangular region and f = f ( x , y , z ). ZZZ R f ( x , y , z ) dxdydz = Z s r Z d c Z b a f ( x , y , z ) dxdydz Lecture 15: Triple Integrals

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Triple integrals over boxes Suppose R = [ a , b ] × [ c , d ] × [ r , s ] is a rectangular region and f = f ( x , y , z ). ZZZ R f ( x , y , z ) dxdydz = Z s r Z d c Z b a f ( x , y , z ) dxdydz Fubini’s Theorem: We can integrate in any order. Lecture 15: Triple Integrals
Triple integrals over general regions 1 Type I R = { ( x , y , z ) | ( x , y ) Du 1 ( x , y ) z u 2 ( x , y ) } 2 Type II R = { ( x , y , z ) | ( y , z ) Du 1 ( y , z ) x u 2 ( y , z ) } 3 Type III R = { ( x , y , z ) | ( x , z ) Du 1 ( x , z ) y u 2 ( x , z ) } Lecture 15: Triple Integrals

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Finding volumes with triple integrals
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}