03_GeometricTransformation(ch5)

03_GeometricTransformation(ch5) - Geometric Transformations...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Geometric Transformations Chapter 5 Introduction Introduction n We deal a lots with objects defined in 2-D and 3-D worlds in computer graphics n All objects have shape, position and orientation Þ geometric description n Geometric transformation n Operations that are applied to geometric description of an object to change its position, orientation, or size n Two types of geometric operations n Vertex operations - Operate on individual vertexes n Primitive operations - Operate on all the vertexes of a primitive 2D Translation 2D Translation n Translation (Fig.s 5-1, 5-2) Only linear 2D transformations can be represented with a 2x2 matrix v Not linear transformation ú û ù ê ë é = y x P ú û ù ê ë é ¢ ¢ = ¢ y x P ) , ( y x y x t t T t t T = ú û ù ê ë é = T P P + = ¢ x t x x + = ¢ y t y y + = ¢ n Rotation n Even though sin( q ) and cos( q ) are nonlinear functions of q , n x’ is a linear combination of x and y n y’ is a linear combination of x and y 2D Rotation 2D Rotation P R P × = ¢ ) ( q ú û ù ê ë é- = q q q q cos sin sin cos ) ( R q q sin cos y x x- = ¢ q q cos sin y x y + = ¢ q (x, y) (x’, y’) 2D Scaling 2D Scaling n Scaling a coordinate means multiplying each of its components by a scalar ´ 2 X ´ 2, Y ´ 0.5 2D Scaling 2D Scaling n Scaling y x s y y s x x × = × = ' ' ú û ù ê ë é ú û ù ê ë é = ú û ù ê ë é y x s s y x y x ' ' scaling matrix S P S P × = ¢ Homogeneous Coordinates Homogeneous Coordinates n Expand to 3 by 3 matrices n All transformation equations can be expressed as matrix multiplication n To do so, add a 3rd coordinate to every 2D point n Cartesian coordinate ⇒ homogeneous coordinate n homogeneous parameter, h n non-zero value n convenient choice of h= 1 , ) , ( y x ) , , ( h y x h h , h x x h = h y y h = ) 1 , , ( y x n (x, y, 0) represents a point at infinity n (0, 0, 0) is not allowed Homogeneous Coordinates Homogeneous Coordinates Homogeneous Coordinates Homogeneous Coordinates § Convenient coordinate system to represent many useful transformations n Possible to represent scaling, rotation, and translation in a matrix form n Any sequence of translation, rotation, and scale operations can be collapsed into a single homogeneous matrix. 2D Transformation Matrices 2D Transformation Matrices ú ú ú û ù ê ê ê ë é × ú ú ú û ù ê ê ê ë é = ú ú ú û ù ê ê ê ë é ¢ ¢ 1 1 1 1 1 y x t t y x y x P t t T P y x × = ¢ ) , ( ú ú ú û ù ê ê ê ë é × ú ú ú û ù ê ê ê ë é- = ú ú ú û ù ê ê ê ë é ¢ ¢ 1 1 cos sin sin cos 1 y x y x q q q q P R P × = ¢ ) ( q ú ú ú û ù ê ê ê ë é × ú ú ú û ù ê ê ê ë é = ú ú ú û ù ê ê ê ë é ¢ ¢ 1 1 1 y x s s y x y x P s s S P y x × = ¢ ) , ( Inverse Transformations Inverse Transformations ú ú ú û ù ê ê ê ë é-- =- 1 1 1 1 y x t t T t R R = ú ú ú û ù ê ê ê ë é- =- 1 cos sin sin cos 1 q q q q ú ú ú ú ú ú û ù ê ê ê ê ê ê ë é =- 1 1 1 1 y x s s S 2D Composite Transformations...
View Full Document

This note was uploaded on 04/29/2010 for the course CSE 4190.411 taught by Professor Shinyeonggil during the Fall '08 term at Seoul National.

Page1 / 62

03_GeometricTransformation(ch5) - Geometric Transformations...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online