This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: = = & n x x = 6 5 35 = = & n y y = 7 1 & ˆ = ( ) ( ) ( ) 8 3 80 30 2 = = & &x x y y x x = 0.375 . & ˆ = x y 1 & ˆ= 7 – ( 0.375 ) ⋅ 6 = 4.75 . The leastsquares regression line: y ˆ = 4.75 + 0.375 ⋅ x . x y y ˆ y y e ˆ= 2 e 0 4 4.75 0.75 0.5625 4 7 6.25 0.75 0.5625 6 6 7 1 1.0000 8 10 7.75 2.25 5.0625 12 8 9.25 1.25 1.5625 Total 0 8.75 ( ) & &= 2 2 ˆ i i i y y e = 8.75 . ( ) &= 2 2 ˆ 1 & ˆ i i y y n = 5 75 . 8 = 1.75 . 75 . 1 & ˆ = ≈ 1.3229 . ( ) &= 2 2 ˆ 2 1 i i e y y n s = 3 75 . 8 ≈ 2.916667 . 916667 . 2 = e s ≈ 1.7078 . 20 75 . 8 2 1= R = 0.5625 . 56.25%...
View
Full Document
 Spring '07
 STEPANOV
 Least Squares, Regression Analysis, Harshad number, leastsquares regression line, observed drying times

Click to edit the document details