This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: STAT 420 Examples for 12/06/2007 Fall 2007 1. Consider the AR(2) process for which it is known that μ = 0, Y t = φ 1 Y t – 1 + φ 2 Y t – 2 + e t Based on a series of length N = 100, we observe y 99 = – 2, y 100 = 3. a) Suppose r 1 = – 0.50, r 2 = 0.55. Use the method of moments to estimate φ 1 and φ 2 . YuleWalker equations for an AR(2) process: ρ 1 = φ 1 + φ 2 ρ 1 ρ 2 = φ 1 ρ 1 + φ 2 – 0.50 = φ 1 – 0.50 φ 2 × 2 – 1 = 2 φ 1 – φ 2 0.55 = – 0.50 φ 1 + φ 2 0.55 = – 0.50 φ 1 + φ 2 & – 0.45 = 1.5 φ 1 & 1 ˆ φ = – 0.30 & – 1 = 2 ( – 0.30 ) – φ 2 – 1 = – 0.60 – φ 2 & 2 ˆ φ = 0.40 b) Use your answers to part (a) to forecast y 101 , y 102 , and y 103 . Y N + 1 = μ + φ 1 ( Y N – μ ) + φ 2 ( Y N – 1 – μ ) + e N + 1 1 ˆ + N y = () 1 ˆ N y = E N ( Y N + 1 ) = μ + φ 1 ( y N – μ ) + φ 2 ( y N – 1 – μ ) Y N + 2 = μ + φ 1 ( Y N + 1 – μ ) + φ 2 ( Y N – μ ) + e N + 2 2 ˆ + N y = ( ) 2 ˆ N y = E N ( Y N + 2 ) = μ + φ 1 ( 1 ˆ + N y – μ ) + φ 2 ( y N – μ ) Y N + 3 = μ + φ 1 ( Y N + 2 – μ ) + φ 2 ( Y N + 1 – μ ) + e N + 3 3 ˆ + N y = ( ) 3 ˆ N y = E N ( Y N + 3 ) = μ + φ 1 ( 2 ˆ + N y – μ ) + φ 2 ( 1 ˆ + N y – μ ) … Y N +...
View
Full
Document
This note was uploaded on 04/29/2010 for the course STAT stat 420 taught by Professor Stepanov during the Spring '07 term at University of Illinois at Urbana–Champaign.
 Spring '07
 STEPANOV

Click to edit the document details