Lect21 - Chapter 4. Linear Transformations Math1111 Matrix...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 4. Linear Transformations Math1111 Matrix Representations Construction of Linear Transformation Theorem 4.2.1 says that a linear transformation L : R n → R m is represented by an m × n matrix A , which is constructed from the standard basis e 1 , ··· , e n for R n . Chapter 4. Linear Transformations Math1111 Matrix Representations Construction of Linear Transformation Theorem 4.2.1 says that a linear transformation L : R n → R m is represented by an m × n matrix A , which is constructed from the standard basis e 1 , ··· , e n for R n . Allusion A linear transformation L is determined by the images/outputs of the basis in the domain. Chapter 4. Linear Transformations Math1111 Matrix Representations Construction of Linear Transformation Theorem 4.2.1 says that a linear transformation L : R n → R m is represented by an m × n matrix A , which is constructed from the standard basis e 1 , ··· , e n for R n . Theorem Let V and W be vector spaces. Suppose v 1 , ··· , v n forms a basis for V . Let z 1 , ··· , z n be (not necessarily distinct) vectors in W . Then there is a unique linear transformation T : V → W such that T ( v j ) = z j . The linear transformation T is obtained by linear extension . Chapter 4. Linear Transformations Math1111 Matrix Representations Construction of Linear Transformation Theorem 4.2.1 says that a linear transformation L : R n → R m is represented by an m × n matrix A , which is constructed from the standard basis e 1 , ··· , e n for R n . Theorem Let V and W be vector spaces. Suppose v 1 , ··· , v n forms a basis for V . Let z 1 , ··· , z n be (not necessarily distinct) vectors in W . Then there is a unique linear transformation T : V → W such that T ( v j ) = z j . The linear transformation T is obtained by linear extension . Example . Find a linear transformation T : R 2 → R 3 such that T ( e 1 ) = ( 1 1 1 ) T , T ( e 2 ) = ( 2 1 ) T . Chapter 4. Linear Transformations Math1111 Matrix Representations Construction of Linear Transformation Theorem 4.2.1 says that a linear transformation L : R n → R m is represented by an m × n matrix A , which is constructed from the standard basis e 1 , ··· , e n for R n . Theorem Let V and W be vector spaces. Suppose v 1 , ··· , v n forms a basis for V . Let z 1 , ··· , z n be (not necessarily distinct) vectors in W . Then there is a unique linear transformation T : V → W such that T ( v j ) = z j . The linear transformation T is obtained by linear extension . Example . Find a linear transformation T : R 2 → R 3 such that T ( e 1 ) = ( 1 1 1 ) T , T ( e 2 ) = ( 2 1 ) T . Ans . T (( x y ) T ) = ( x + 2 y x x + y ) T . Chapter 4. Linear Transformations Math1111 Matrix Representations Construction - Example Example . Is there a linear transformation T : R 3 → R 2 such that T ( u 1 ) = ( 1 1 ) T , T ( u 2 ) = ( 1 1 ) T , T ( u 3 ) = ( ) T where u 1 = ( 1 1 ) T , u 2 = ( 1 ) T , u 3 = ( 1 ) T ?...
View Full Document

Page1 / 37

Lect21 - Chapter 4. Linear Transformations Math1111 Matrix...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online