CSE4/586 (Spring 2010): Homework 1
1. (70 points)
Let
P
,
Q
,
R
range over state predicates of some program. Prove or disprove
the following:
1. [
P
∨
(
P
∧
Q
)
≡
P
]
2. [
P
∧
(
Q
∨
R
)
≡
(
P
∧
Q
)
∨
(
P
∧
R
) ]
3. [
P
∨
(
Q
∧
R
)
≡
(
P
∨
Q
)
∧
(
P
∨
R
) ]
4. [
¬
(
P
∧
Q
)
≡ ¬
P
∨¬
Q
] (De Morgan)
5. [
¬
(
P
∨
Q
)
≡ ¬
P
∧¬
Q
] (De Morgan)
6. [
P
⇒
Q
≡ ¬
P
∨
Q
]
7. [ (
P
n≡
Q
)
≡
(
Q
n≡
P
) ]
2. (30 points)
Translate the following English statements into predicate logic:
1. Every positive integer is smaller than the absolute value of some negative integer. (Use
This is the end of the preview. Sign up
to
access the rest of the document.
 Spring '09
 Negative and nonnegative numbers, following English statements, ¬P ¬Q

Click to edit the document details