m4-heuristics - Informed search algorithms Chapter 4...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
    Informed search algorithms Chapter 4
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Material Chapter 4 Section 1 - 3 Exclude memory-bounded heuristic  search
Background image of page 2
    Definition Uninformed search strategies Generate states Test them  With the goal Incredibly inefficient in  most cases Informed search strategies Problem-specific knowledge Evaluation Find solution more  efficiency Eval(State)  Eval(Goal)
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Outline Best-first search Greedy best-first search A *  search Heuristics Local search algorithms Hill-climbing search Simulated annealing search Local beam search Genetic algorithms
Background image of page 4
    Review: Tree search A search strategy is defined by picking  the  order of node expansion
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Best-First search The knowledge is applied on the queue this is provided by an “ evaluation function” the node with the best evaluation is expanded first. Description Function Best_First_Search(Problem, Eval-Fn) return sol or fail Inputs: Problem, Evaluation_function; Queuing-Fn <- sort the queue by Eval-Fn return General_Search(Problem, Queuing-Fn)  Algorithm
Background image of page 6
    Best-first search Idea: use an  evaluation function   f(n)  for each node estimate of "desirability" Expand most desirable unexpanded node Implementation : Order the nodes in fringe in decreasing order of  desirability Special cases: greedy best-first search A *  search
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Best-First search Function that calculates the cost to  reach a goal is called,  heuristic function denoted by  h : h(n)  = estimated cost of the cheapest path  from state at node n to the goal state
Background image of page 8
    Romania with step costs in km
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Greedy best-first search Evaluation function  f(n) = h(n)  ( h euristic) = estimate of cost from  n  to  goal e.g.,  h SLD (n)  = straight-line distance from  n  to Bucharest Greedy best-first search expands the  node that  appears  to be closest to goal
Background image of page 10
    Greedy best-first search  example
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Greedy best-first search  example
Background image of page 12
    Greedy best-first search  example
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/04/2010 for the course CS 101010 taught by Professor Zaki during the Spring '10 term at DeVry Cleveland D..

Page1 / 41

m4-heuristics - Informed search algorithms Chapter 4...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online