HW#1%20solution

# HW#1%20solution - 1.33 The temperature and pressure at the...

This preview shows pages 1–10. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1.33 The temperature and pressure at the surface. of Mars during a Martian spring day were determined to be “50 9C and 900 Pa, respectively. (3) Determine the density of the Martian atmosphere for these conditions if the gas constant for the Martian atmosphere is assumed to be equivalent to that of carbon dioxide. (b) Compare the answer from part (a) with the density? of the earth’s atmosphere during a spring day when the temperature is 18 “C and the pressure 101;.6 kPa (abs). ’19 m QDD ﬂ 2. ___ 0.0214 [-63 [Dear/4W! ‘22. #33 “ml; --.-'. ---/- -.--..-,.---, - -'."-'-'-': .-: -'-'-'-':'/-'.'\-:'.':"/-'-:'.". :'--'-'-:'."/.'. v:"\-3'-'.':-'.'.':v-".'-':1: .-'.'.'-'.'i'. .':'\-:':'\-'f.-\-"\$ > » x\-,_:.'I::'.'_r_-::\-3._.I¢ .;-_-_.__-:-E.H{FF-ﬂ.:_-_1.:_-_-_-_.._,:-5-_:,. .................................................................. .-- -.-- .--r.1r.-.-.-.--.~:*-:-:;' N: -:.'_: :.'.-'.-'. 5 .'.'.-'.-'.'.-'.'_: :4 f.'_-'_-_-: f. :-_ >_-_: -'. 3 .11 < .c -: ::-_'_-'.'. v ....._:_-_-I.-_::- aaaaaaaaaaaaaaaa V “riff-31\$" --.;.z.-,.-I.-:1a.;;a-.2.-I.-.:/_7.--;;-:_-u----_;wry-.m---_;«.-v-z.-.--.;,-. -.I;.._-.I_¢I_ .z.-»_. a": ................. 2 , .2 -- < : .-.-.-_: :-.-_-.-_:: :-_-.-_-_-. .- :- : -.z.- -. - - - :- -.- -.: - : : - .- .-. -. - -.- .- - .-_.-.-.- .- ----------------------- — -. >,2:'.'::.-.'.'_-":.":':{:'¢-:-'..\::'.'.'4v_:: -'_::'/.:.'_'\-.':- ._-.-_-.:;-:.-__>:_ ::_-.-_;-_.-.-_--.;-.-:3:-.:.-:-.-_-:;-.-._ .-: -_-:-._ 15‘! A layer of water ﬂows down an inclined ﬁxed surface with the velocity proﬁle shown in Fig. H.517. Determine the magnitude and dhrec~ tion of the shearing stress that the water exerts on the ﬁxed surface for U = 2 m/s and h = 0.1 m. T—‘ﬂ '7" FIGURE P153 77mg.J ai- '/’he #Ikec/ surﬁace (31:0) 43 7:0 «5 50 771472‘ 3 {2 lm) TA'ﬂ = é/JX/ow (‘21:) _—_- 9:, 943? x “3-2 J! «cf/:77 fl; d/recfm” all f/aw 1 155/ 1 _65 A 12—in.~diameter circular plate is placed over a ﬁxed Rotating plate bottom plate with a 0.1—in. gap between the two plates ﬁlled with glycerin as shown in Fig. P165. Determine the torque required to rotate the circular plate slowly at 2 rpm. Assume that the Velocity distribution in the gap is linear and that the shear stress on the edge of the rotating plate is negligible. 0.1 in.gap ravage/(17”, due ﬁn shear/M7 575%:2: on Plate I! 671(4/ 7% f dv 5/ ‘7’: P 27/1 when (/4.- ‘Zvrdr, Thus, I? c/ '7]. = I” T 277‘le” K . 02,: If; 2‘. 5f’f55f5 “61"”? 0” AOHDM o - du 5/me 7=/"— ‘73 / 4nd Ar 4 ﬂank Ve/ocl‘uﬁ, 4’157‘619mha'n [sear/jam) Tye WU 2'2 = y. 7. 33.0.? 5 a s s 777%?) k Veloel'l‘y disl‘l’lbul‘m} a)“: 2-75-73 " f” = {\$4715} 4f”! 591771 7715 def; y/ulm é Lf 57/: . ' 45::- mm = 0.0772 H-d /- 5-7 in) 1.83 To measure the “water depth in a large open tank with opaque walls, an open vertical glass tube is attached to the side of the tank. The height of the water column in the tube is then used as a measure of the depth of water in the tank. (a) For a true water depth in the tank of 3 ft, make use of Eq. 1.22 (with p 6 == 0°) to determine the percent error due to capillarity as the diameter of the glass tube is changed. Assume a water temperature of 80 °F. Show your results on a graph of percent error versus tube diameter, D, in the range 0.1 in. < D < 1.0 in. (b) If you want the error to be less than 1%, what is the smallest tube diameterallgwed? ,7 , , t. l 7. The excess he’sz / In)” 44am [2: ﬁre; meg: {fem/ah 13 A, {Ea/.2?) 9 ~ ~ 54?? I : For 19350 ram: @322 ‘ a , .. . 5; a”? 00:. ; (I); Pram vat/e at u. Append“ a #5.» may .1 20°F 0”: ’fWX/o“? Ila/,4: and 62;;2 77W, ﬁrm 531/). I I r . an. .: .7 - 1 tact) 4 (er/xiv It), 3 37¢? xw ’i (a, , v Lt,,‘.,D,,(rn.); ‘ 3‘ S. g (62.22. min/R PU”) I ; Int: :o/o 9””. g: x ,00 E+yugvdep11t§ tf"')£0“0W5 gaCYom 53113-5 f'nﬂd'; 3 “ §°lo €rror§= 3'79"?” x100 i _ ‘ 3 Duftn.) bah.) Plot 4’14 EV??? Vermsjfuée drama-er 15' r éﬁpwn an; 771: amt: l/paga ‘ ‘ ‘ '1 (aw/z) /-2,73 £35" ‘ (€0,723); Diameter % Error of tube, in. 0.1 1.26 0'15 0-84 1.50 0.2 0.63 0.3 0.42 § 100 0.4 0.32 "3 0.5 0.25 g 0.50« 0.6 0.21 0.7 0.18 “ 0.00 a 0.8 0.16 0 0.2 0.4 0.6 03 0'9 0‘14 Tube diameter, in. 1 0.13 Values obtained from Eq. (3) /~% 79 /. W 1.94 (See “Walking on water,” Section 1.9.) (a) The water Strider bug shown in Fig. P194 is supported on the surface of a pond by surface tension acting along the interface between the water and the bug’s legs. Determine the minimum length of this interface needed to support the bug. Assume the bug weighs 10“4 N and the surface tension force acts vertically ‘ upwards. (b) Repeat part (a) if surface tension were to support "1- a person weighing 750 N. HFIGURE P1.94 or}; For €1ullthltAm , aw: 0"} T - ‘20 (a) _ an 3 ID *N_ . IK‘ 0.. TWMDT—M n» "V wetghi: Im 0"” Surface JTWSlbn = (.3Lx'b~sm ﬂm lenjfh MC [chic-)th = (1.3LXI0'%)(103M) r: 13th {W4 -—-—_.__.._...... .19) o ( ﬂ: WON == Lox xwwm (Law/m [l 7.34xw4ﬂ I'Yh 2.3 - An unknown immiscible liquid seeps into the bottom of I open oil tank. Some measurements indicate that-the depth of the: unknown liquid is L5 m and the depth of the oil (Specific weiht W:— 8.5 kN/m3) ﬂoatin on ﬂap is 50 m. A pressure connected to the berm-m of the tank reads 65: rvity 0f the unknown liquid? - --_---------.--_-.--_--.-.-1-.-.-.-.-.-.-._-.-.-.-.-:-.-.-.-.-.-:-._.-.-.-: . . , - a a . . a . , . a . . . . . a . . . . . . . . . , , . . . . . . . . , , , . , . . , h . . , ~ . , . _ . f e - h . t . . . - , _ w - , , _ _ _ . . _ , . _ _ _ _ t _ . _ . _ _ . . . . _ . . . . . . . , . , . ,. For the great depths that may be en- countered in the ocean the compressibility of sea— water may become an important consideration. (3) Assume that the bulk modulus for seawater is constant and derive a relationship between pressure and depth which takes into account the change in ﬂuid density with depth. (b) Make use anqu-my E3311), 5mm?) E = Eu: V *5?” f. It; f 13 a fund/0:7 of P] we must} deftrmme /’=7C[1") I985"?- of part (a) to determine the pressure at a depth of 6 km assuming seawater has a bulk modulus of 2.3 X 109 Pa, and a density of 1030 kg/m3 at the surface. Compare this result with that ob- tained by assnming a constant density of 1030 kg/m3. ' (£3,242 (I) (Eg- 1.13) tJ/tene J’£= fad-ll) 7‘772‘ depﬁ; lag/mu sax-Ace, ....,.~..-.............._..:....:.._.._..r :._.:._.:_.._._.._.:_._.,._..,..:~.,.,:\_.,_“_.: ............... h. I. ' ' ".' .'..'- -' I. -|-.-. .. _ . . . . . I'm-91h“. .‘i‘f'I-IIE-u HI; nun-m: -.-:.H.-_.-.;.-.,._-._.a w_:r__.,,;:.-I_:..-}.:'.; v.1. H“.- F. M1'H.I_-_.I,I-1_: 53h. _. .HI-H- The basic elements of a hydraulic press are shown in Fig. P212, The plunger has an area of 1 in.2., and a force? F13 can be applied to the plunger through a lever mechanism having a mechanical advantage of 8. to 1. If the large piston has an area of l50 in}, what load, F2, can be raised by a force of 30 1 applied to the lever? Neglect the hydrostatic pressure variation; z. --.. - - - . --:---- ; -.--'-'----1-.-----t-----;---.--.-------.--;--.-.-;----.--.------.-;-_--.--;-;.--.--_-.--.---.-.--.-.-,.-.-.-.-.--.-;-;-.-.-.-.--_-.-.--t.,..-..-..u; ............................................................................. .. ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 10

HW#1%20solution - 1.33 The temperature and pressure at the...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online