{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

cee291_10_sp_hw6_sol

# cee291_10_sp_hw6_sol - =-yt 41 cos π π2cos2πtT 41...

This preview shows page 1. Sign up to view the full content.

CEE 291 – Problem Solving using Computer Tools Homework 6 – Measurement methods and analysis solution key Problem 1 = . * = Linearity error 0 005 1000cm 5cm = . * = . Hysteresis error 0 0015 1000cm 1 5cm = . * = . Sensitivity error 0 0025 500cm 1 25cm = . ° * ° * = . Thermal sensitivity error 0 0002 C 25 C 500cm 2 5cm = . ° * ° * = Thermal zero drift 0 0002 C 50 C 1000cm 10cm , , , , Linearity Hysteresis Sensitivity Thermal sensitivity thermal zero = + + + + = + . + . + . + = . drift σl2 σh2 σs2 σtse2 σtzd2 52 1 52 1 252 2 52 102 11 6cm Problem 2 Figure . Plot of the continuous and discrete signals for the function y(t)=sin(5t)+cos(11t). The green line is a moving  average using the preceding two data points, while the purple lines is a moving average of the preceding 10 data points. Problem 3 First three, non-zero terms of the Fourier series:
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: =-( ) +-+-yt 41 cos π π2cos2πtT 41 cos3π3π2cos2π3tT 41 cos5π5π2cos2π5tT The term cos2πtT contains the fundamental frequency = = = → = = = . Fundamental frequency ω 2π2 radsec πradsec f ω2π π2π 0 5 Hz : = = . , = = Harmonics 1st harmonic f1 0 5 Hz 2nd harmonic f2 = . , 123 1 5 Hz 3rd = = harmonic f3 125 = . 2 5 Hz Figure . Plot of the first, three, non-zero terms and the sum of the first, three, non-zero terms of the series. Figure . Plot of the amplitude versus the frequency for the first, three, non-zero terms of the series. Figure . The original, discrete, triangular signal. Eight intervals spaced at T/8 were used with T=2. Figure . The discrete Fourier Transform for the data in Figure 4....
View Full Document

{[ snackBarMessage ]}