Assign5sol

Assign5sol - MATH (19 ASSIGNMENT FSOIWHOMS Chldtlll (a) We...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH (19 ASSIGNMENT FSOIWHOMS Chldtlll (a) We cowf'Fee Cools maS‘l' ch'clclj aJr 'JFWS‘F/ widen l4 iS‘ hoi-ies'i, A; fill/me, 306$ icy, this ‘lEMfC/‘tra’hd‘e approaches room aml so 'i’lne (axle, o-f Coolms afpvisacle lam. (l9) Lei“ “be ilne, 'lewoerml'tue 0'? line, comm wl “ltvwz, ‘t‘ GNU“ 0C Tgo LQWIJ‘Ek6T—lolTl‘Lg’ {AB-lv‘ml COHCii-llow ) CotS'i- 1: To): 95’. (note: “oCWWS «Pmt’0P‘l‘““°-"+“i) 3. y = — y. The slopes at each point are independent of 2:, so the slopes are the same along each'line parall Thus, III is the direction field for this equation. Note that for y = 2, y' = 0. 'i l?" 4‘ y’ = 58(2 ~ y) = 0 on the lines m = 0 and y -.-= 2. Direction field I satisfies these conditions = 0 on the line 3} = —a: + 1. Direction field IV satisfies this condition. Notice also that on the line y = if; —:E WC which is true in IV. 1 gm; = 0 on the lines m = {my 0 and y = 0, and y' > 0 for 0 < a; < 7r, 0 < y < 7r. Direction field H satisfies these \ 5.2 0 4’ m I : ___'_... —_; LL Jo (‘M'V‘L'OJ (pm 4mm . N 4 +‘A + \r’j 3%”) j + j“! J 1) ($3ka Warts!) S m " _\. -— J— 'm "TEqu @Le M3 J(§+j_lfij - g 1:! Swag _1: Ti; zg. K4,?) go ans. i5 *Tec‘amcallg ) «Hun (we, klo flunk} Be Cons('&erel Sevora-Lelj, 1+ Carmséomh .{n M SOlu‘Lle j: 1) walla..ch Colder: 4’th EJMSEEc—Lmfl. {sync—um, SGpAm-bg‘sifo- d J H“) K L409 53 9,5 if! Linear; #513?ng $39 +403 = COSX (899.13.602). ‘ #2 NoMMear beaxuse o4? cogj 46mm 31% MGM'me [Deanne or? juj” —l—erm. {#11 Linear: Ha: 'Porm 3% — xéxj = xe—x. £5 3/: 1+5} % 3/—5j = DC? a “(pear C .. jm‘kCSrQ—‘qmg Pig‘ucfk‘r IS 6.) 5J1. = e 5" e’S—x e/—SX3/_ : Tb (Ti (€.§xj> : xe‘gx “reva PmcLufi mtg" g (30% showlé chalk H 3) :3 ~ x 2 —-Ex 8 j fifKUfJDL MODOVA IK‘LCSVQ‘LW? 130‘”? Sl'clej‘ I -—5—'xe:§’° — %‘e’5°‘c/>~ EU I B? Rq-a{(an¢jw\9 213/'\;~j=é9¢ SI‘QHS 5/4 : 3. jwkefircflma vpachris esfidxz 3.1111“: 35“". “DE beams VQ / 9r, , 1/1 V1 / \ Ja '/ A V v 3/1 1 1 1- 01 “>- 3,:(13>=3v<’ % xfl‘jgx’dx" 22w ' .«1 CU! qE‘8(0L) Given: 77(0): “(00) K: /O,ooo, P(/):400x2:/1oo) 5— mm 19m is vwmm 4 7w“ mum .t flew. Far/F9, logtsv’n‘c MAzI CS 4 “swan k” at? P a“ W" k“) 63o- P (0000 1 I a SeebarQUQ rewn‘k run"! 67 | 1 (0000- F , SO wt Iacme, g Rerarmnsmod (incl. mkgrevimaj we hang, j *4" : S‘kcilc PO— 1509 a t—Jwéoom—P) 2 "’r‘ C :9 P J : k—i a-C, lay. “a mLeJ ‘ )OOOo—P F. mmmww‘ A” “W ““—‘”"1 c H c Hp" —" 7-" 7A” -- 7" fl“ ‘ “‘“'_"“‘“'“"—- ~77 7 r .. - 10000ngM ( ‘ \+szew‘. NM (P(Q:L’OO % L\00 = 'OOOOC‘ =3) Limwwczi'woocl l 1461 fic_L(OO,—‘— z '95) ‘2‘4. (200 __ 4 WW“) é * We“ 19% ea- ® __ A. >g:§gemek zgeahww s _I H: ié (0000 i fins «Pk __ lbooo M e, = (o 000 H > M (33' e“ 2% + (3"? WWG'E)" f 9 69‘ WWW!» 89+ PH): 5000 (MA some $3 JV loooO : 90m) ,— C) ut ’ A k "Patcumar A :2) jww + ’% 30$ [WA-L svw éusw‘a J‘hégs/‘Ma-bkb. ( f Mums) P03131044, r roflQ in * V636 “‘1‘ '9 “SWLS wawem IVVFWMOJ‘WOYL/ 9% = (1 -(::::) $43.?“ Mo) = 3003 égtflmw dwx _ I amLL Revarnmsfl’ (Hm DE +3 391+ 1? : 5—0 (m’ 200)) Or, Solve. a! JAN—bk (g eQw"Va‘<w+ '5 56(M—200): .§—%(M—~loo) if§::b'{>e£°r Bj MSQ—eCAnoml m'zoo ll (3 (6| ‘Sl Nth): Zoo + garb , loo, LU IQ TLM”; V‘Hxn, dMOuVL+ (M grew/15‘) (WC SQ.\+ on? 41%;. bté A .I .7 Raamwfloovx DOA'M (GHQ/w AG . (0")SMCQ, (5% 0C Q 2 TE : kQ M305 Li‘s “SCAM (Jami); “PmPOT—HOVAOJ " 0f } 8% 7: " k G WW k >0. - “(+0 (5) (3% : O LOW“ Q: Q (emqflnowal foMu-how) >0 wLu ®<O <0 UAW» Q>O .r’”/"L /,/’ / ONO) kuwevfiev/ \‘S LLWP‘nvSiLoJ (C) 0") \S G» Sepmmua : (CavH Mme, Mjar'Ne, mass !) gig : 4k cLJc =3 film: 'ka/é (Mt): Cefkt. Qua-:00 % Q, = Ce° => CEQQ => me): 006”. (A) Hwy/We owp Carbon—i“! is appmx.,556839arr, So 1 o ’ o e flmz 1 v "I __ 1. =9) :1 5: . "’ i) ‘k $518 I £24§XIO [ad (6) MN (LSSume: $=O [5 4mm, «or? ClveéuHm ‘t ’T 1: H42 PMS/0% c105 44m (as/v or! rcwxalvxs) Go: oflSU/xml QMQ Thu QC"): 0.30 (3)0) 50 Q0 e'kT=O,B Q0) ULmre, k of.“ (A) $5 kT : JA(_l>5,) T: $533): 5568/4403)” 93 “Flu VQMCLMS (we, afprox, CHOU 3?.qu old. ...
View Full Document

This note was uploaded on 05/04/2010 for the course MATH 128 taught by Professor Zuberman during the Winter '10 term at Waterloo.

Page1 / 6

Assign5sol - MATH (19 ASSIGNMENT FSOIWHOMS Chldtlll (a) We...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online