chpp12 - 12 . , , , ( ( u(x, y, z, t)), . u(x, y, z)). . (...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 12 . , , , ( ( u(x, y, z, t)), . u(x, y, z)). . ( (x, y, z)) ( , ) ( ). , , 12.1 Example 12.1 ( . ) , . . , u T (x + dx) u(x + dx) u(x) 2 1 T (x) O Solution t dx. 1 , 2 . , . x x + dx . : T2 cos 2 - T1 cos 1 = 0 : T2 sin 2 - T1 sin 1 = dm u t2 2 x x + dx x = 0, x x = l. u(x, t) T1 , T2 , x x , (1) (2) 0 cos 1 sin tan = (1) T1 = T2 = T (2) T dm = dx, ( u x - x+dx u x u x ). a= =T x 2u 2u dx = 2 dx x2 t T 1 T x . , ds = 2u 2u - a2 2 = 0 2 t x T t . du2 + dx2 - dx u x 2 (3) - 1 dx 1 2 u x 2 = 1+ , Hooke , u x dx ds 0 , T . ,T ,a . , f . u f dx T (x + dx) 2 1 T (x) u(x + dx) u(x) O x x + dx 2u 2u dx + f dx = 2 dx x2 t 2u 2u f - a2 2 = 2 t x x T , (4) f . ) , . Example 12.2 ( P (x, t)S P (x + dx, t)S u u + du x Solution u(x, t). ), x , (x, x + dx). x + dx x P (x, t) x t 2u t2 . , t, x ( P (x + dx, t)S - P (x, t)S = dm 2 dm = Sdx, . P 2u Sdx = 2 Sdx x t 2u P = 2 x t , Hooke , P ( P =E u x ) u x E Young . 2u 2u - a2 2 = 0 t2 x a = E , , ( 2u - a2 t2 2 , ) u=0 . (5) 2 2 2 2 + 2+ 2 2 x y z (6) Laplace . 12.2 Example 12.3 ( Solution x ) . , u(x, y, z, t) qx qx = -k u x x , , , (x, y, z) u x , . t . , qy = -k u y u qz = -k z k . Fourier . q = -k u (7) q u . 3 . . , dx, dy, dz, z dz dy dx y x dt x [(qx )x - (qx )x+dx ]dydzdt = = ,k [(qx )x - (qx )x+dx ]dydzdt = k , dt y k dt z k , k c . dm = dxdydz, k 2u 2u 2u + 2 + 2 x2 y z . 2 k x u x k u x - k x+dx u x dydzdt x dxdydzdt 2u dxdydzdt x2 2u dxdydzdt y 2 2u dxdydzdt z 2 dxdydzdt = dm c du udxdydzdt = cdxdydzdu k c = u - t . 4 2 u=0 (8) , . F (x, y, z, t), k 2 , , D, . , . . udxdydzdt + F (x, y, z, t)dxdydzdt = cdxdydzdu u - t 2 u= 1 F (x, y, z, t) f (x, y, z, t) c (9) 12.3 , . , . , . , , , u(x, y, z, t) = u(x, y, z) - 2 2 u=f f (10) u=- Poisson Laplace , . . , f =0 2 u=0 u(x, y, z) , (11) Poisson . 2 u=- 0 , 0 . = 0, 2 Laplace u=0 , 2u - a2 t2 u(x, y, z, t) u(x, y, z, t) = v(x, y, z)e-it . v(x, y, z) Helmholtz 2 2 u=0 v(x, y, z) + k 2 v(x, y, z) = 0 (12) k= a . 5 12.4 , Newton . , . , , u|t=0 = (x, y, z) , u t , u(x, y, z) u|t=0 = (x, y, z) , . t = (x, y, z) t=0 , -- , , -- . , . , , , ; , Example 12.4 Solution ( . , , : . , . . . . : , . ) , u|x=0 = 0 u|x=l = 0 Example 12.5 Solution x=0 , x=l (x ) , F (t) F (l - dx)S O x=0 u|x=0 = 0 x=l Newton F (t)S - P (l - dx, t)S = dm dx 0 F (t) = P (l, t) 6 . , F (l)S l - dx l (13) x=l , dx. 2u 2u = Sdx 2 t2 t Hooke P =E u x x=l , F (t) = 0, u x , F (t) = -k[u(l, t) - u0 ] u0 , u k + u x E = x=l u x 1 F (t) E (14) = x=l =0 x=l (15) k u0 E (16) , Example 12.6 Solution . ( u| = (, t) ) (17) . , , n (, t), , ( ) , , -qn | = (, t) , . qn - n -qn - , . d0 , , , qn |- - qn | = 0 , 0, qn |- - qn | = 0 7 , . . , - . , Fourier , q = -k u qn = q n = -kn ( u) = -k n n -k -k - , u n , = 0, u n . , u| u0 (, t) = -H(u| - u0 ) H . u + hu n h= H k = hu0 . u n u n - qn | = 0 - u n + (, t) = 0 - = 1 (, t) k (18) =0 (19) : Newton (20) : : 1 , . , u| = (, t) (21) u n = (, t) (22) u + hu n 1 = (, t) (23) , . 8 . . , ; . ( . ), , : -- , ; -- . , Problems 1. l ( 1) S t=0 F (x = 0) (x = l) F Figure 1: 2. u(r, t) u(r, t) 3. 4. M l a ( ( 2) 0) q1 q2 u(r, t) Figure 2: 9 ...
View Full Document

This note was uploaded on 05/05/2010 for the course PHYSICS 122 taught by Professor Weizhen during the Spring '06 term at Peking Uni..

Ask a homework question - tutors are online