lec16

# lec16 - 2.001 - MECHANICS AND MATERIALS I Lecture #17...

This preview shows pages 1–4. Sign up to view the full content.

±± ± 2.001 - MECHANICS AND MATERIALS I Lecture # 11/8/2006 Prof. Carol Livermore Recall: Stress Transformations [ σ ]= ± σ xx σ xy ± . ± σ xy σ yy ± σ xz = σ yz = σ zz =0 ± [ σ ± σ σ x x x y σ σ x y ± . σ x ± x ± = σ xx + σ + σ xx + σ cos 2 θ + σ xy sin 2 θ 22 σ y ± y ± = σ xx + σ σ xx σ cos 2 θ σ xy sin 2 θ σ x ± y ± = σ xx σ sin 2 θ + σ xy cos 2 θ 2 1 17

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
±² ³ Mohr’s Circle σ xx yy > 0 σ xy > 0 C =( σ, 0) = σ xx + σ , 0 2 2 σ xx σ R =+ σ 2 2 xy Principal stresses: σ 1 = σ + R σ 2 = σ R Mohr’s circle 2 θ corresponds to θ in physical space. 2
±² 2 ( σ x ± x ± σ ) 2 = σ xx σ yy cos 2 θ + σ xy sin 2 θ 2 2 σ x 2 ± y ± = σ xx σ sin 2 θ + σ xy cos 2 θ 2 2 ±± σ ) 2 =c o s 2 2 θ + σ 2 sin 2 2 θ +( σ xx sin 2 θ ) cos 2 θ ( σ xy σ xx 2 σ xy σ )( σ xy 2 σ 2 = σ xx σ sin 2 2 θ + σ 2 cos sin 2 θ cos 2 θ x ± y ± 2 xy 2 2 θ ( σ xx σ ) σ 2 σ xx σ + σ 2 ( σ x ± x ± σ ) 2 + σ x 2 ± y ± = xy 2 These both describe the same circle. This serves as a proof of Mohr’s circles as

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 05/05/2010 for the course MSE 2.001 taught by Professor Carollivermore during the Fall '06 term at MIT.

### Page1 / 7

lec16 - 2.001 - MECHANICS AND MATERIALS I Lecture #17...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online