ps03_solns

ps03_solns - 18.03 PS3 Solutions—Spring 09 1a 2 1 i = 2(1...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 18.03 PS3 Solutions—Spring 09 1a. 2 1 + i = 2(1 − i ) (1 + i )(1 − i ) = 2 − 2 i 2 = 1 − i , and 1 − i = √ 2 e − iπ/ 4 . 1b. e 2 − πi = e 2 e − πi = ( e 2 )( − 1), so the real part is − e 2 and the imaginary part is 0. e 2+ πi/ 2 = e 2 e πi/ 2 = e 2 i , so the real part is 0 and the imaginary part is e 2 . 1c. z 3 − 1 = ( z − 1)( z 2 + z + 1) = 0 since z 3 = 1. As z − 1 negationslash = 0, we have z 2 + z + 1 = 0. 1d. Polar representations: e 2 πi/ 3 , e 4 πi/ 3 . Rectangular representations: − 1 2 ± √ 3 2 i . parenleftBigg − 1 2 + √ 3 2 i parenrightBiggparenleftBigg − 1 2 + √ 3 2 i parenrightBigg + parenleftBigg − 1 2 + √ 3 2 i parenrightBigg + 1 = parenleftBigg − 1 2 − √ 3 2 i parenrightBigg + parenleftBigg − 1 2 + √ 3 2 i parenrightBigg + 1 = 0 parenleftBigg − 1 2 − √ 3 2 i parenrightBiggparenleftBigg − 1 2 − √ 3 2 i parenrightBigg + parenleftBigg − 1 2 − √ 3 2 i parenrightBigg + 1 = parenleftBigg − 1 2 + √ 3 2 i parenrightBigg + parenleftBigg − 1 2 − √ 3 2 i parenrightBigg + 1 = 0 1e. cos4 t = Re( e 4 it ) and e 4 it = ( e it ) 4 = (cos t + i sin t ) 4 . This last expands to cos 4 t + 4 i cos 3 t sin t + 6 i 2 cos 2 t sin 2 t + 4 i 3 cos t sin 3 t + i 4 sin 4 t = ( cos 4 t − 6 cos 2 t sin 2 t + sin 4 t ) + i ( 4 cos 3 t sin t − 4 cos t sin 3 t ) which means that cos4 t = cos 4 t − 6 cos 2 t sin 2 t + sin 4 t ....
View Full Document

{[ snackBarMessage ]}

Page1 / 2

ps03_solns - 18.03 PS3 Solutions—Spring 09 1a 2 1 i = 2(1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online