{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

springps08_soln

# springps08_soln - 18.03 PS8 Solutions-Spring 09 1a L(eat...

This preview shows pages 1–2. Sign up to view the full content.

18.03 PS8 Solutions—Spring 09 1a. L ( e at f ( t )) = integraldisplay 0 e st e at f ( t ) dt = integraldisplay 0 e ( s a ) t f ( t ) dt = F ( s - a ) 1b. L ( u ( t - a ) f ( t - a )) = integraldisplay 0 e st u ( t - a ) f ( t - a ) dt = integraldisplay a e s ( τ + a ) u ( τ ) f ( τ ) = e as integraldisplay 0 e f ( τ ) = e as F ( s ) 1c. Let g ( t ) = t + 1, so L ( g ( t )) = L ( t ) + L (1) = 1 s 2 + 1 s = s + 1 s 2 . Define G ( s ) = s + 1 s 2 . By (a), F ( s ) = L ( f ( t )) = L (( t + 1) e t +1 ) = e L ( e t ( t + 1)) = eG ( s - 1) = es ( s - 1) 2 . By (b), L ( u ( t - 1) te t ) = L ( u ( t - 1) f ( t - 1)) = e s F ( s ) = e 1 s s ( s - 1) 2 . 1d. L ( f ( at )) = integraldisplay 0 e st f ( at ) dt = integraldisplay 0 e s ( τ/a ) f ( τ ) 1 a = 1 a integraldisplay 0 e ( s/a ) τ f ( τ ) = 1 a F parenleftBig s a parenrightBig 2. Let Y ( s ) = L ( y ( t )). Then L ( y ) = sY ( s ) - y (0) = sY ( s ) - 2 and L ( y ′′ ) = L (( y ) ) = s ( sY ( s ) - 2) - y (0) = s 2 Y ( s ) - 2 s . So, y ′′ + y = 1 = L ( y ′′ ) + L ( y ) = L (1) = [ s 2 Y ( s ) - 2 s ] + [ sY ( s ) - 2] = 1 /s . Thus (using partial fractions), Y ( s ) = 2 s + 2 + 1 /s s 2 + s = 2 s 2 + 2 s + 1 s 2 ( s + 1) = 1 s 2 + 1 s + 1 s + 1 = L ( t ) + L (1) + L ( e t ) .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}