CENG304Homework3

CENG304Homework3 - L = ( a n b m | n ≥ 2, m ≥ 3}....

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Fatih University Department of Computer Engineering CENG 304 Automata Theory and Formal  Languages Assignment 3 Ahmet Faruk Bişkinler, 07010441 15 May 2007
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
h    ttp://www.biskinler.com     http://ahmet.piskinler.com/ 3.3.1. Construct a dfa that accepts the language generated by the grammar S     abA A     baB , B     aA  |  bb abba bb|a  3.3.2. Find a regular grammar that generates the language  L ( aa *( ab  +  a )*). S     aA A     aA  |  B , B     abB  |  aB  |  λ   Starting with the start symbol  S , we can generate 1 or more  a ’s followed by the variable  A .  By  changing the variable to  B , we can now additionally generate zero or more  ab ’s or  a ’s. 3.3.4. Construct right- and left-linear grammars for the language 
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: L = ( a n b m | n ≥ 2, m ≥ 3}. Right-linear: S → aaA , A → aA | bbbB , 2 B → bB | λ Left-linear: S → Bbbb , B → Bb | Aaa , A → Aa | λ 3.3.10. Find a regular grammar for the language L={ a n b m : n+m is even} n+m=Even when n and m is even or n and m is odd. S → aaS| λ A → bbA| λ 4.1.13. If L is a regular language , prove that L1={uv: u ε L, |v|=2} is also regular. 3...
View Full Document

This note was uploaded on 05/07/2010 for the course COMPUTER S 138 taught by Professor Icamarra during the Spring '10 term at UCLA.

Page1 / 3

CENG304Homework3 - L = ( a n b m | n ≥ 2, m ≥ 3}....

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online