{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Math16A - Fall 05 Final Solutionss

Math16A - Fall 05 Final Solutionss - SOLUTIONS TO MATH 16A...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
SOLUTIONS TO MATH 16A, AUTUMN 2005 FINAL 1. Use logarithmic differentiation to compute f 0 ( x ) /f ( x ) = d dx (ln( f ( x ))) = d dx (ln(( x + 1) 1 - x )) = d dx ((1 - x ) ln( x + 1)) = - ln( x + 1) + 1 - x x + 1 Thus, f 0 (2) = f (2)( - ln(2 + 1) + 1 - 2 2+1 ) = 3 - 1 ( - ln(3) + ( - 1 / 3)) = - ln(3) 3 - 1 9 . 2. a. A, b. G, c. E, d. B, e. H 3. Write f ( t ) = # of bacteria in tens of thousands t hours after noon . We know that f is an exponential function. So, we may write f ( t ) = Ae rt for some constants A and r . We know 3 = f (0) = A and 4 = f (1) = 3 e r so that e r = 4 / 3. Hence, g (3) = 3 e r 3 = 3(4 / 3) 3 = 3(64 / 27) = (64 / 9). That is, there are (64 / 9) × 10 4 = 71 , 1111 / 9 individuals at 3pm. bf 4. Z 2 1 (2 x 3 - 5 e - 7 x + 4 x - 8 x ) dx = [ 1 2 x 4 + 5 7 e - 7 x + 4 5 x 5 4 - 8 ln( x )] | 2 1 = (8 + 5 7 e - 14 + 4 5 2 5 4 - 8 ln(2)) - ( 1 2 + 5 7 e - 7 + 4 5 - 8 ln(1)) = 8 + 5 7 e - 14 + 8 5 4 2 - 8 ln(2) - 1 2 - 5 7 e - 7 - 4 5 = 6 . 7 + 5 7 e - 14 + 8 5 4 2 - 8 ln(2) - 5 7 e - 7 5. a. J, b. B, c. D, d. J, e. F 6. We write the price in dollars. The demand function is linear, so we have x ( p ) = mp + b for some parameters m and b . We compute m = 500 - 350 . 8 - 1 = - 750 and 350 = - 750(1) + b so that b = 1100. The revenue is then R ( p ) = px ( p ) = - 750 p 2 + 1100 p . Differentiating, R 0 ( p ) = - 1500 p + 1100 so that we maximize revenue with R 0 ( p ) = 0 or p = 11 / 15. 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}