Dynamics_Part13

# Dynamics_Part13 - Problem Set 2: Problem 3. Problem: A...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Problem Set 2: Problem 3. Problem: A projectile is launched with initial speed nV as seen by a stationary observer at an angle to the horizontal from a height h above the ground. The object is to have the projectile strike the center of a vehicle as shown. The center of the vehicle (whose top is also at height h) is at a horizontal distance L from the launch point at time t = 0 when the projectile is launched. The vehicle's speed at that time is vx (0) = V . The vehicle accelerates horizontally with a = 1 g, where g is gravitational 2 acceleration. Ignore effects of friction on the ball's motion. Verify that n satisfies a quadratic equation involving the dimensionless quantity gL/V 2 . HINT: Set the vertical origin of your coordinate system at a distance h above the ground. . . . . . . . . . . . . . . . . . . . . . ... ... . ... . .. .. . . ......... . . . .. . . . . . . . . . . . .. . . . ... . ... .... . . .. .. ..... .. . . . .. ... . .. ... . . .. .. .... . .... . .. . .. ... . . ... . . .. .. .. .. .... . .. ..... .. ..... . .. ... . ... . .. . 1 . ..................... . ......... ..... . ................... .. ................ ... . ... ......... .. . . . .......................................................... . ......................................................... .... . ........... ...... ............ ................ . ............................................................................. ................ .. .. ........... ............ ............ 2 .. .............................................................. x .. . . . . . . ............................................................................... . . ................. ................................................................ ........... .. .. ............. .............. .......... .. .. .......... ............................................................. ......... . . . . . .. . .. .. ............................................................. . .. . ........... .......... ............... .... ... . ............ ..... . . .......................................................... . . .. . .. .. . . .. . .. .. .. .......................................... . ........... ... ........................................... ............ .............................................. ............ ...... .............. . ............................................................................................................................................................................................................................................................................................................. ............................................................................................................................................................................................................................................................................................................. ...... . ............ ... . . ... ................................................................................................................................................................................................................................................................................................................ ................................................................................................................................................................................................................................................................................................................ ................................................................................................................................................................................................................................................................................................................ ................................................................................................................................................................................................................................................................................................................ g nV a= g v (t) v v Solution: To solve this problem, we first solve for the projectile's position as observed by a stationary observer. Then, we compute the accelerating vehicle's position, again as observed by a stationary observer. Equating the projectile and vehicle positions yields the desired equation. Denote the projectile's coordinates by xB and zB . Then, the equations of motion and initial conditions are d2 xB = 0; dt2 d2 zB = -g; dt2 The solution is xB (t) = nV t cos and xB (0) = 0, xB (0) = nV cos zB (0) = 0, zB (0) = nV sin 1 zB (t) = nV t sin - gt2 2 The projectile strikes the vehicle when zB = 0, i.e., when nV t sin = 1 2 gt 2 = t= 2nV sin g Thus, when the projectile strikes the vehicle, its horizontal coordinate, xB , is xB = 2n2 V 2 sin cos g Denoting the vehicle's position by xA , its motion is governed by 1 d2 xA = g; dt2 2 The solution is xA (0) = L, xA (0) = V 1 xA (t) = L + V t + gt2 4 ...
View Full Document

Ask a homework question - tutors are online