Dynamics_Part78

# Dynamics_Part78 - Problem Set 10: Problem 1. Problem: The...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Problem Set 10: Problem 1. Problem: The motion of a small cart of mass m is governed by two springs, a dashpot and an oscillating attachment B, which moves horizontally with xB = b cos t. Ignore effects of rolling friction on the cart's motion. (a) Derive the differential equation governing the cart's motion. HINT: Check that your equation makes sense for the limiting case k1 = k2 and Point B not moving. (b) Determine the natural frequency of the system. (c) Determine the critical damping coefficient for the system. Solution: (a) The forces acting on the cart are as shown in the following figure. Clearly, for motion in the positive x direction, both spring forces (relative to a displacement x) and the dashpot force are directed in the negative x direction. Attachment B's motion adds a force in the positive x direction for positive xB . ................................................................................................. ................................................................................................. ................................................................................................. .......................................... . ... ................................................................................................. ... ................................................................................................. ........................................................................................................... ........................................................................................................... 2 B . ................................................................................................. ................................................................................................. ... ................................................................................................ .. ................................................................................................. ................................................................................................. ................... . ... . .................................................................................................................... . ................................................................................................. . ................................................................................................................ ................................................................................................. .. . . ................................................................................................. .... ................................................................................................. ..... ......... ................................................................................................. ........................................................................................................... ................................................................................................. ........................................................................................................... . ... . ...... . ....... ................................................................................................. ................................................................................................. ................................................................................................. 2 ................................................................................................. ................................................................................................. 1 . . .............. .. . . . . ........... . . cx m x k (x - xo ) k (x - xo ) k x The basic equation of motion for this system is m = -cx - k1 x - k2 (x - xo ) + k2 (xB - xo ) x where xo is the equilibrium displacement of Spring 2. This equation can be rearranged to read m + cx + (k1 + k2 )x = k2 xB x Finally, using the fact that the displacement of attachment B is xB = b cos t, the differential equation governing the cart's motion is m + cx + (k1 + k2 )x = k2 b cos t x In equilibrium with xB = 0 and k1 = k2 = k, the equation of motion would simplify to m + cx + 2kx = 0 x This is physically correct since we expect to have the springs in series for this limiting case. (b) By inspection, the natural frequency of this system is given by 2 n = k1 + k2 m = n = k1 + k2 m ...
View Full Document

## This note was uploaded on 05/12/2010 for the course AME 301 taught by Professor Shiflett during the Spring '06 term at USC.

Ask a homework question - tutors are online