Repaso Anal Discriminante - Tomando logaritmos, obtenemos...

Info iconThis preview shows pages 1–59. Sign up to view the full content.

View Full Document Right Arrow Icon
Análisis Discriminante
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Dos problemas principales de clasificación Discriminación (clasificación supervisada) Agrupamiento (Cluster Analysis) (clasificación no supervisada)
Background image of page 2
El problema estadístico de discriminación Dadas dos poblaciones de elementos con distribución conocida clasificar un nuevo elemento en una de las dos poblaciones
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Ejemplos Clasificar: Restos de un cráneo como homínido o no Un solicitante de un crédito como solvente o no Un paciente con cáncer o no Una obra de arte al autor A o B. Diseño de máquinas de clasificación (para cartas, billetes,monedas, etc.)
Background image of page 4
Datos habituales Matriz de datos Elemento n1 Grupo A Grupo B Elemento n2 Elemento 1 Elemento 1
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Análisis de genes
Background image of page 6
Identificación de rasgos .23 …. Matriz Identificar Rostro(pauta) Clasificar como conocido o no
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Problemas de clasificación A 4 ? 100 euros? 1000 dracmas?
Background image of page 8
Planteamiento general
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Costes
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Caso particular: Poblaciones normales
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 20
Background image of page 21

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 22
Background image of page 23

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 24
Background image of page 25

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 26
Background image of page 27

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 28
Background image of page 29

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 30
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Tomando logaritmos, obtenemos la clasificación en P2 Interpretación de la regla: Simplificando lo que es común en ambos miembros quedan solo términos lineales en x Probab. de error y a posteriori Interpretación Clasificar en A Clasificar en B A B Fisher A B Clasificar en población B Clasificar en A Enfoque de Fisher Varios grupos ejemplo Discriminación cuadrática Clasificación logística Problemas del modelo lineal • No hay garantía de que las probabilidades estén entre cero y uno, pueden tomar valores negativos o mayores que uno. • Es heterocedástico. Si estimamos el modelo lineal con variable de clasificación –1 +1 se obtiene la función lineal discriminante. Otros enfoques: • Redes neuronales • Métodos no paramétricos • Máquinas de vector soporte redes neuronales Aproximar la función mediante Máquinas de vector soporte...
View Full Document

This note was uploaded on 05/12/2010 for the course APPLIED ST 2010 taught by Professor Various during the Spring '10 term at Universidad Nacional Agraria La Molina.

Page1 / 59

Repaso Anal Discriminante - Tomando logaritmos, obtenemos...

This preview shows document pages 1 - 59. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online