0809stirling

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: O.H. Probability and Markov Chains MATH 2561/2571 E09 1 Asymptotics of n! For the study of random walks on the lattice it was important to know the asymptotics of n!. The first result is given by the following lemma. Lemma 1.1 Denote bn = log(n!) = x log x - x n 1 n k=1 log k. Then n 1 bn x log x - x) + log n . Proof. Let f (x) be an increasing function with f (1) = 0; by comparing the areas, we have (see the picture!) 11111 00000 11111 00000 1111111111 0000000000 1111111111 0000000000 111111111111111 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000 11111 00000 11111111111111111111 00000000000000000000 111111111111111 000000000000000 11111 00000 1111111111 0000000000 1111111111 0000000000 111111111111111 000000000000000 111111111111111 000000000000000 11111111111...
View Full Document

This note was uploaded on 05/12/2010 for the course APPLIED ST 2010 taught by Professor Various during the Spring '10 term at Universidad Nacional Agraria La Molina.

Ask a homework question - tutors are online