This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: CHEM 120A Problem Set 6 Solutions David Hoffman , Doran Bennett , Tara Yacovitch 3/17/2010 1. The solutions can be found in the McQuarrie and Simon Solutions manual. Note that the units used (e.g. for the gyromagnetic ratio) are different from the convention adopted in class. 2. We want to find the energy expectation values for the (2 , 1 , 1), (2 , 1 , 0) and (2 , 1 , 1) states of the hydrogen atom when exposed to a magnetic field in the zdirection. Our perturbation is thus: V = E mag = z B = e 2 m e c L z B . (1a) And the total Hamiltonian for the system is: H = H (0) + V (1b) Lets stop and think about the effect of the pertubation on the system. Our 0 th order states (the hydrogen atom wavefunctions of form R ( r ) Y m l ( , )) just happen to be eigenstates of the L z operator. All offdiagonal terms of the Hamiltonian matrix are zero, h l ,m ,n H l,m,n i = E (0) n h l ,n ,m  l,m,n i + e 2 m e c B h l ,m ,n  L z  l,m,n i = 0 for n ,l ,m 6 = n,l,m (1c) and the 1 st order energies correspond directly to the diagonal matrix elements. For a (2 , 1 ,m ) state, the energy is: E = H (0) + V (1d) = h 2 , 1 ,m H (0)  2 , 1 ,m i + h 2 , 1 ,m  V  2 , 1 ,m i (1e) = E (0) 2 + h 2 , 1 ,m  e 2 m e c L z B  2 , 1 ,m i (1f) Where E (0) 2 is the unperturbed energy of a state with n = 2. The L z operator acts on a general ( n,l,m ) wave function as follows: L z nlm ( r,, ) = m ~ nlm ( r,, ) . (1g) 1 E  ~ B  E 2 , 1 , E 2 , 1 , 1 E 2 , 1 , 1 E 2 , 1 , B B E 2 , 1 , 1 B B E 2 , 1 , 1 Figure 1: Depiction of splitting due to an applied magnetic field, Zeeman split ting . Allowing us to write the perturbed energy as: hHi = E (0) 2 + e B 2 m e c m ~ h 2 , 1 ,m  2 , 1 ,m i = E (0) 2 + B B m. (1h) Subbing in the values of m = 1 , , 1 we see that the (2 , 1 , 0) state is unperturbed by the magnetic field while the (2 , 1 , 1) state is raised in energy and the (2 , 1 , 1) state is lowered in energy. See the diagram in Figure 1 ....
View
Full
Document
This note was uploaded on 05/14/2010 for the course CHEM 120ACHEM taught by Professor Chandler during the Spring '10 term at University of California, Berkeley.
 Spring '10
 CHandler

Click to edit the document details