This
preview
has intentionally blurred sections.
Sign up to view the full version.
Unformatted text preview: x x x x x T--= . Q.7 If T : V 3 → V 3 is the linear transformation defined as T(1,0,0)= (-1,0,0) , T(0,1,0)= (0,0,-1) ,T(0,0,1)= (0,1,-1) . Prove T-1 exist. Find T-1 : V 3 → V 3 Q.8 If T : V 3 → V 3 is the linear transformation defined as T(1,0,0)= (0,-1,0) , T(0,1,0)= (0,0,-1) ,T(0,0,1)= (-1,0,1) . Prove T-1 exist. Find T-1 : V 3 → V 3 Q.9 Page 153 Q1 (a) Q.10 Page 157 Q2(b) 13. Find a basis of N(T) and a basis of R(T) of the linear transformation T: V 3 → V 3 , defined by ( 29 ( 29 , 3 2 , , , 3 2 1 3 2 1 x x x x x x T--= . Hence find n(T) and r(T). Page 193 Q.1(a), (c) (f) Q 5 (b) Page 200 Q.1 (a) , (c), (f), (g) Page 202 Q.2 Page 68 Q.6 ( c) , (g) Page 73 Q.4 (e) , Q.5 (d) Page 76 Q. 1 ( c ) , Q.2 (b)...
View
Full Document
- Spring '10
- XYZ
- Math, Linear Algebra, Pilani, linear transformation, Birla Institute of Technology and Science, BIRLA INSTITUTE OF TECHNOLOGY, Mathematics II Assignment
-
Click to edit the document details