This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 18.02a Practice Midterm Questions, Fall 2009 Problems 15 cover material from the first unit. This will be on the midterm, but wont be emphasized. Problems 15 take about 11.5 hours, problems 617 take 23 hours. The actual test will be shorter designed to take 2 hours, with simpler arithmetic. Problem 1. Consider the point P = (20 , , 0), the plane P : x + 2 y + 3 z = 6 , and the point Q = (1 , 1 , 1) on P . a) Compute the distance from P to P . b) Give parametric equations for the line through P and perpendicular to P . c) Find the point of intersection between P and the line of part(b). For later reference, call this point R. d) Find the angle, PQR. e) By computing  PR  directly, verify your answer to part (a). f) Find the area of the triangle with vertices P, Q and R. Problem 2. Suppose tape is unwound from a roll in such a way that it is always vertical. Assuming the roll is centered at the origin and has radius 2, and the end of the tape starts at the point (2 , 0), give parametric equations for the path traced out by the end of the roll. For what values of your parameter does this make sense? Problem 3. The motion of a point P is given parametrically by OP = r ( t ) = h 4sin t, 5cos t, 3sin t i ....
View Full
Document
 Winter '10
 JohnBush

Click to edit the document details