{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

EG260 Solutions-example_2

EG260 Solutions-example_2 - [email protected] Slone 2008 EG260...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EG-260 @Avril Slone 2008 EG260 Dynamics - Example Sheet 2 Single degree of freedom systems Answers 1.i).Moment of inertia ( )2bamI+=Let θbe angle of rotation Then moment( )( )θθ2kasinaak−=××−(small angle approximation) So that the equation of motion is 2=+θθkaI&&or 2=+θθIka&&( )22=++θθbamka&&mkbaan+=ωii).Rotation is about OMoment of inertia about pivot = I, moment of inertia about cg = IGUsing the parallel axis therefore, 2mrIIG+=Restoring moment (decreasing θ, negative) = θθmgrmgrM−≈−=sinsfor small θ Newton’s Second Law: θθθmgrsinmgrI−≈−=&&mg r θ OEG-260 @Avril Slone 2008 So ( )2=++θθmgrmrIG&&2mrImgrGn+=ω2.First determine the moment of inertia of the disc Consider an annular element ( )hxxxmxIρδπδδ222==where h,ρare the density and thickness. So ∫=⎥⎦⎤⎢⎣⎡==rrGhrxhdxhxI4432422πρπρπρBut the mass of the plate 2hrmπρ=So that 22mrIG=Now the disc rotates by θsuch thatφθlr≈The tension supporting in any one wire is T where...
View Full Document

{[ snackBarMessage ]}

Page1 / 5

EG260 Solutions-example_2 - [email protected] Slone 2008 EG260...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online