are106-homework-6-key

are106-homework-6-key - 2/25110 ARE 106 HW#6 !J Wa.~Q.: cJ....

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
2/25110 ARE 106 HW#6 !J Wa.~Q.::: cJ. ... ~ ~2. @due, t ~3 ewQ,'f- ~ R>~ O-CjQ. ,,- a ~ 9e.~~r +- ~41 r-O-(. .t + e, C\JX\CU\ +" ~s X"t\o.\n\-'{ ~q t~o,J>ts t\.\ \}j\\'h \)"'\(\\\<1 Nloa6"1) (S.QQ SmyU(1'(d .rornt\O. .\- 0(\ Y\e:~_~ fD'-~~) Modell: OLS, using observations 1-49 Dependent variable: WAGE Omitted due to exact collinearity: PROF coefficient std. error t-ratio p-value ------------------------------------------------------ -- canst 1954.03 334.750 5.837 8.00e-07 *** EDUC 43.1762 27.8827 1. 548 0.1294 EX PER 33.3579 10.1834 3.276 0.0022 *** AGE -8.66932 5.77825 -1. 500 0.1414 GENDER 527.085 154.365 3.415 0.0015 *** RACE 241.422 l30.525 1. 850 0.0718 * CLERICAL -938.937 172.124 -5.455 2.75e-06 *** MAl NT -1074.69 200.896 -5.349 3.87e-06 *** CRAFTS -763.364 177.186 -4.308 0.0001 *** Mean dependent var 1820.204 S.D. dependent var 648.2687 Sum squared resid 5012756 S.E. of regression 354.0041 R-squared 0.751501 Adjusted R-squared 0.701801
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
F(8, 40) 15.12078 P-value(F) 6.36e-l0 Log-likelihood -352.1521 Akaike criterion 722.3041 Schwarz criterion 739.3305 Hannan-Quinn 728.7639 Excluding the constant, p-value was highest for variable 4 (AGE) /\ UJCl~Q. = V15L-\.O~ ~ '1~. \l'nl-Q.d.IJ. .t. T 3'?>.'36'1Q ~~~~r - CO{~~~;o. .~~ ls.co:' 1 ) (\.5L\~) <. ?:. .1. .\~) + ;'21. ~(($ ~e.ncUr t l..L\L L\'). .1. . ro-c.(? - q 3<0. q~, c..\e. .,I(\c. .~\ - \e\ L.\. ~q MCLlt\t II A \;) l \. ~S"() 1 l -12>.1-\S""b') (- to '3 Yq ) / - 1\. .D'1. 5\. .g~ c..,'("C,\.~~ (, - '-\ . 3,0'0') ~'2--::. 0.15\SO\ A- D = 3Sl.\. ()C)l\ \ The coefficient "PROF" was taken t ofthe model because you cannot have all ofthe categories (in this case professio , clerical, maintenance, and crafts) in the model for a given set ofdummy variables because hey will equal the intercept. This problem is known as perfect multicollinearity. Model 2: OLS, using observations 1-49 r. i Dependent variable: WAGE ',' coefficient std. error t-ratio p-value EDUC 43.1762 27.8827 1. 548 0.1294 EXPER 33.3579 10.1834 3.276 0.0022 *** AGE -8.66932 5.77825 -1. 500 0.1414 GENDER 527.085 154.365 3.415 0.0015 RACE 241.422 130.525 1. 850 0.0718 *
Background image of page 2
CLERICAL 1015.09 297.354 3.414 0.0015 *** MAINT 879.334 308.629 2.849 0.0069 *** CRAFTS 1190.66 300.343 3.964 0.0003 PROF 1954.03 334.750 5.837 8.00e-07 *** Mean dependent var 1820.204 S.D. dependent var 648.2687 Sum squared resid 5012756 S.E. of regression 354.0041 R-squared 0.751501 Adjusted R-squared 0.701801 F(8, 40) 15.12078 P-value(F) 6.36e-10 Log-likelihood -352.1521 Akaike criterion 722.3041 Schwarz criterion 739.3305 Hannan-Quinn 728.7639 P-value was highest for variable 4 (AGE) The coefficients that are not incorporated into the n variable "PROF" do not vary between the two models; the standard error ofthese coefficie s does not differ either. However, the standard
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 8

are106-homework-6-key - 2/25110 ARE 106 HW#6 !J Wa.~Q.: cJ....

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online