tutorial4 - ERG2020A Tutorial 4 Karnaugh Map (K-map) (2)...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
    ERG2020A Tutorial 4 Karnaugh Map (K-map) (2) GAL, OPAL & Lab 2
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Answers to question in tutorial 3 Simplify WXYZ + W X Y Z ’ + WY ’ + Y Z ’ + WYZ ’ + W X WXYZ + W X Y Z ’ + WY ’ + Y Z ’ + WYZ ’ + W X = WXYZ + W X + W X Y Z ’ + Y Z ’ + WYZ ’ + WY = XYZ + W X + Y Z ’ + WZ ’ + WY = XYZ + XY + W X + WY ’ + Y Z ’ + WZ = XZ + XY ’ + W X + WY ’ + Y Z ’ + WZ ’ + WX = XZ + XY ’ + X + WY ’ + Y Z ’ + WZ = X + WY ’ + Y Z ’ + WZ “short” eats “long” re-arrange consensus thm. consensus thm. again “short” eats “long”
Background image of page 2
    index x 1 x 2 x 3 Minterm ( m i ) Maxterm ( M i ) 0 0 0 0 x 1 ' x 2 ' x 3 ' x 1 + x 2 + x 3 1 0 0 1 x 1 ' x 2 ' x 3 x 1 + x 2 + x 3 ' 2 0 1 0 x 1 ' x 2 x 3 ' x 1 + x 2 ' + x 3 3 0 1 1 x 1 ' x 2 x 3 x 1 + x 2 ' + x 3 ' 4 1 0 0 x 1 x 2 ' x 3 ' x 1 ' + x 2 + x 3 5 1 0 1 x 1 x 2 ' x 3 x 1 ' + x 2 + x 3 ' 6 1 1 0 x 1 x 2 x 3 ' x 1 ' + x 2 ' + x 3 7 1 1 1 x 1 x 2 x 3 x 1 ' + x 2 ' + x 3 ' Minterm cares about 1’s of functions Maxterm cares about 0’s of functions By definition, m i = M i ’ & m i ’ = M i
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Minterms and Functions m 3 = m (011) = x 1 x 2 x 3 ’ = ( x 1 + x 2 + x 3 )’ = M 3 x 1 ’ + x 2 + x 3 ’ = M (101) = M 5 F = m 0 + m 1 + m 5 = ( m 2 + m 3 + m 4 + m 6 + m 7 )’ = M 2 M 3 M 4 M 6 M 7
Background image of page 4
    Implicant ( m ) / Implicate ( M ) Implicant / implicate is any rectangles that cover 2 n minterms / maxterms e.g. For 2 e.g. For 2 2 minterms, it can be in the form of 1 x 4 or 2 x 2 minterms, it can be in the form of 1 x 4 or 2 x 2 1 1 1 1 1 1 00 01 00 01 11 10 x1x2 x3x4 0 1 3 2 4 5 7 6 1 2 1 3 1 5 1 4 8 9 1 1 1 0 11 10 00 0 0 0 0 0 0 0 0 00 01 01 11 10 x1x2 x3x4 0 1 3 2 4 5 7 6 1 2 1 3 1 5 1 4 8 9 1 1 1 0 11 10
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Prime Implicant (PIs) They are the largest implicant rectangle you can drawn on K-map A prime implicant is prime when there is no other implicant covers it In this example both of PIs are essential too 1 1 1 1 1 1 00 01 00 01 11 10 x1x2 x3x4 0 1 3 2 4 5 7 6 1 2 1 3 1 5 1 4 8 9 1 1 1 0 11 10
Background image of page 6
    Essential Prime Implicants (EPIs) Essential minterm (Emt) is the minterm covered by only 1 PI. The corresponding PI is called
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/18/2010 for the course ENGINEERIN ERG2020A taught by Professor Leekinhong during the Spring '07 term at CUHK.

Page1 / 34

tutorial4 - ERG2020A Tutorial 4 Karnaugh Map (K-map) (2)...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online