# Calc 2 - = 2x/2x 4 ln(2x 4(Y 10 Y=-sin^-1(5x^2 4 Sin-1 =-1 square root of(1-x^2 = 1/suare root of(1(5x 4)^2(derivative of 5x^2 4 11 –cos-1(4x

This preview shows pages 1–2. Sign up to view the full content.

1) Find the Volume of the Solid generated by revolving about y-axis, circle x^2+y^2=16, by line x=4, y=4. V=2pi integral(4,0) x. (4-Square root of (-x^2+16) dx< let U=-x^2+16. 2) use shell method, about y-axis, Y=8-X^2, y=x^2, x=0 8-X^2=X^2, 8-2X^2 V= 2piintegral (0,2) x(8-2x^2) 3) Second Quadrant 9-x^2, by the x-axis, by the y-axis, about the line x=1 R=1-(-square root of (9-y)) V= integral (0,9) pi [1+suare root (9-y)]^2 dy 4)Region in First Quadrant by the line Y=25, Y=25-X^2 and by line X=5, about Y=25 R= 25-(25-X^2)= X^2 PI integral (0,5) (x^2)^2 5) Volume about xaxis, x=7y-y^2, x=0 2 PI integral (0,7) Y(7Y-Y^2) 6) About the line Y=3, x=y+6, x=y^2 2 PI integral (0,3) (3-Y) (Y+6-Y^2) 7) About Y-axis, X=2, Y=2+(X^2/4) X= square root of (y-2/4) 2 PI integral (0,2) x(2+(x^2/4)) 8) e^(xy)+xy=5 ( implicit diff) E^(13xy) [(13)(Y)+(1) dy/dx(13x)] + (1)(y)+ dy/dx (x) =0 13Ye^(13xy) + 13 xe^(13xy)+Y+dy/dx(x) = 0 Dy/dx = -y/x 9) Y= (2x+4)^x Lny= ln(2x+4)^x = XlnX(2x+4)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = 2x/2x+4 ln(2x+4) (Y) 10) Y= -sin^-1(5x^2+4) Sin-1 = -1/ square root of (1-x^2) = 1/suare root of (1-(5x+4)^2) (derivative of 5x^2+4 11) –cos-1(4x+7)/5-cos-1= 1/ suare root of (1-x^2) (dx) U= 4x+7/5, du = 4/5 4/5/square root of ((1-(4x+7)^2/25) 4/5/ 1/5(sq. rt of (25-(4x+7^2) = 4/ sq. rt 25- ( 4x+7^2) 12) Y = tan-1(2x)/x Use quotient rule, let u = tan-1(2x) and v = x, ------.> (Uv – Vu)/v^2 13) 2 sinn^2x dx 2 integral sin^2(x) . dx 2 integral ½ (1- cos2x) dx Integral 1 – intergral cas2x dx Let u = 2x, dx= ½ du x-1/2 integral cos du X-1/2 sinu +c sub U then 13) integral sq. rt (16-x^2) X= 4sint , so dx= 4 cost. Dt, sq. rt (16-x^2)= 4cos t Integral 4 cost 4 cost.dt= 16 intgeral cos^2 t dt 8 integral (1+cos2t) dt= 8(1+1/2 sin2t) +c 8(t+sint cost) +c Cost= cos [sin-1(x/4)]= SQ. RT (1)-(x^2/16) = ¼ sq rt (16-x^2) = 8 sin-1 (x/4)+(x/2) sq rt (16-x^2) +c 14) integral (4x^2+x+4)/(x^2)(x-4) Ax+B/x^2+2 + C/x-4 = x^2+x+4 ....
View Full Document

## This note was uploaded on 05/19/2010 for the course MATH 21:640:136 taught by Professor Wang during the Fall '10 term at Rutgers.

### Page1 / 2

Calc 2 - = 2x/2x 4 ln(2x 4(Y 10 Y=-sin^-1(5x^2 4 Sin-1 =-1 square root of(1-x^2 = 1/suare root of(1(5x 4)^2(derivative of 5x^2 4 11 –cos-1(4x

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online