Beam Example 2

# Beam Example 2 - Problem 1 The tapered beam shown below has...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Problem 1 The tapered beam shown below has a rectangular cross-section whose depth varies linearly in x: w ‘ghw U . x: .Yv g) Reqmwd: Iticuéizc {hr beam with 1M; {ﬁli’ilitti'lia liiuil’i}? antiwar” section properties db inﬂow: « ,1] s W l e i / ﬁrmwmrrwm WWWW “Mi Few—«w 1_ 9:2 wwwm~w~avl+~ ~~~~ ~~-~ 142 WWW»; Use the ﬁnite element method to determine an approximate solution for the displacement and rotation at x = L. Assume that E =107 psi, b = 0.1 in, h] = 0.5 in, h2 = 1.0 in and L =20 in. Assume that the depth of each element is equal to the average value of the depth in the tapered beam at the center of each element. .L x}; xix} HEOUMDAM Cmbrrmps (AG-u": 9'20 FHL= FU—LiMZ‘: 0 F743 :""320 _':> FEWs -1 1 . 51/0 PSL . Ar e/cmm 7z Q3 ﬂy" c/M‘”ZZ® H F L: /0 :14. r Ar-IOI'M— l was __./ A: 0. 0875/4 Z 0-625" A = 0A 0425!“ m f=o_005583.'u7 Jr I” I:o.ooZDS\$/,:‘ H 0-1.» 3 Eﬁag'f'SK/oz/és Eff: 625 x10 [55 z 2 El :55 .‘BSX/Oz/és I'n E1: = 20.3‘1x163/AS/L4 I 3 ' [343710 8?.5 o o [—8¥.5 o o 0 0.67m) 3.350 i o —~o.c,3\oo 3.350 0 3.350 22.3.: I o —3.;:§3_ ILL; —8¥.s o o 34.5 o o 0 "6.6400 —3.350' c a .6700 “3.350 0 3.350 1/1? '1 o ~335a 22.33 CL) . 3 l Dd“: ,0 62,5 0 o | 4.2.5 o o o 0.277, [.220 l 0 ~52qu 1.27.9 _O___ “1.22; 8435 _o :szzo' 7.068 —(,2.5 o o igzg- o o o —-o.2‘f‘fl 4.2201 0 0.2%” 4.225 0 1-210 7.068‘ 0 4.220 8.86 l I I ' [11¢ “ L4.L_I_K_.z_._ o [<21’J IC'Z‘L‘tK'FI Kn. z 1 O : Kzu I K17. 5K1 CfIFEFj 3 I I [D 87.5 No C) “8?.5 o 0 l0 0 o 0 0.6700 3.355 ‘ o -047“ 3.350 0 o o _o £350 _z_z.33 __o —3__._3_5o ILH‘ lo 0 o~~ ~37; o o [(50 o 0 P625 0 o o —o.(a7-oo #3350 O 0.714, 4430 f o 40.”!me ' _0 k3 350 UPI 0 “2430 309? 0 'I220 #068 o o o “62.5 o o [62.5 o o“ o o o ‘ O «9.2%; 4.220! 0 a 29w ‘/ 220 o o o 0 L220 4.06% 0 4.22.0 3.136 1 'O 1:“ 8 Fv'n “a = M‘ 15, o 91 8 “3 v; E _——————-——————_'— ff ,FINH‘L. I 5TEP~ DLSTmBu'rED OP (FRAM Ea. 7~. Iota) ELEM WT 57.0 m x )PZ‘ —P‘3 t F2141 -= ~235Mb lb LE]: 0 ——2,ooolb -33’3ao1b{m 17mm, L. EQUA-T (cs/Ki ‘ Dc] L71: ETD] fix—rm 7 (a) 146 Luv/2:10pm. O/rZSP/Iucmgaﬁ aft 1’3qu 9—? ) Llosz ﬁuaﬂ‘dus ﬂ,” Hz? 4/: “071 A a V5! -_ So we W ‘ﬂtm “ma/«1,17 14/ 15f 93, [as 0.7/97 -Z..ISO «0.297, 1.220 ’U’L o —2.130 30-‘1’7- -I:'zzo 7.068 9;, = 0 -o.zI-ILH "Lzzo 0.294, 4.20.0 V; P O I. no 9. 068 4.230 88¢ 93 .3 1); = 5?.8? P ;../up*!o 93:5.1/ Frag/u, No ...
View Full Document

## This note was uploaded on 05/19/2010 for the course MAE 472 taught by Professor Peters during the Spring '08 term at N.C. State.

### Page1 / 5

Beam Example 2 - Problem 1 The tapered beam shown below has...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online