# 2433-Ch12-slides - 3-D Coordinate System: (12.1) P : (x1,...

• Notes
• 51

This preview shows page 1 - 18 out of 51 pages.

The preview shows page 16 - 18 out of 51 pages.
3-D Coordinate System:(12.1)P: (x1, y1, z1)andQ: (x2, y2, z2),points in 3-space:(A)Distance Formula:d(P, Q) =(x2-x1)2+ (y2-y1)2+ (z2-z1)2(B)Midpoint Formula:The mid-pointRof the line segment joiningPandQis the pointR:x1+x22,y1+y22,z1+z22.1
(C)Equation for the sphere ofradiusrand centerP(a, b, c):(x-a2+ (y-b)2+ (z-c)2=r2.
Examples:1.The pointsA: (2,-1,3)andB: (-4,5,-1)are the endpoints of a diameter ofa sphere.Find an equation for thesphere.2
2.The pointsA: (2,-2,1), B: (1,1,3), C: (2,0,5)are the vertices of a right triangle.Find an equation of the sphere withcenter at the midpoint of the hy-potenuse and passing through thevertex opposite the hypotenuse.
Vectors:(12.2, 12.3)Avectorinn-dimensional space isa directed line segment; it is repre-sented by an orderedn-tuple of realnumbers.3-Space:A vectorain 3-spaceis an ordered triple of numbers:a= (a1, a2, a3)The vector0= (0,0,0) is thezerovector.3
Operations on VectorsLeta= (a1, a2, a3) andb= (b1, b2, b3)be vectors in 3-space and letÎ±bea real number (scalar).(A)Equality:a=biffa1=b1, a2=b2, a3=b3.4
(B)Vector Addition:a+b= (a1+b1, a2+b2, a3+b3).Motivation from physics:5
4.to each vectorathere corre-sponds a uniquexsuch thata+x=x+a=0(additive inverse)xis denoted-a
Subtraction:a-b=a+ (-b) = (a1-b1, a2-b2, a3-b3)7
(C)Multiplication by a Scalar:Î±a= (Î± a1, Î± a2, Î± a3).Motivation from Physics:Properties of Mult. by a Scalar:1.1a=a,0a=02.(Î±+Î²)a=Î±a+Î²a,Î±(a+b) =Î±a+Î±bdistributivelaws8
3.(Î±Î²)a=Î±(Î²a) =Î²(Î±a)NOTES:1.aandbareparalleliffa=Î»bfor some numberÎ».2.0is parallel to every vector;0= 0afor alla.
(D)Norm(Magnitude)&Di-rection:Thenormofa,denoted bya,is:a=a21+a22+a23,0= 0.ais a nonnegative number; it isthelength of the vectora.9
Properties of Norm:1.aâ‰¥0;a= 0 iffa=0.2.Î±a=|Î±|a.3.a+bâ‰¤a+b.(triangleinequality)10
Unit Vectors:uis aunit vectorifu= 1Ifbis a non-zero vector, thenub=1bbis a unit vector in the same directionasb.11
Unit Coordinate Vectors:i= (1,0,0),j= (0,1,0),k= (0,0,1)i,j,k-Representation:a= (a1, a2, a3) =a1i+a2j+a3kDirection:????0has no direction.12
Dot Product:(12.4)Leta= (a1, a2, a3) andb= (b1, b2, b3)

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 51 pages?

Course Hero member to access this document

Term
Summer
Professor
Any
Tags