3-2 example7 - Student: Grady Simonton Colu'se:...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Student: Grady Simonton Colu'se: 1\-Iat11119: Elementary Statistics - Spring 2010 - C‘RN: 49239 Instructor: Shawn Pan-ini - 16' weeks Date: 2.-"'18.-"'10 Book: T1‘iola: Elementary Statistics. Me Time: 11:20 AM Listed below are the playing times (in seconds) of songs that were popular at the time of this writing. Find the (a) mean, (b) median, (c) mode, and (d) midrange for the given sample data. Is there one time that is very different from the others? 488 23'? 234 243 243 293 276 228 246 218 26'? 242 218 253 258 259 a. The mean of a set of values is the measure of center found by adding the values and dividing the total by the number of values. 2;: (— sum of all data values mean = — n (— number of data values To calculate the mean, first calculate the sum of the data values. 2x = 4,203 seconds Then divide the sum by the number of data values to get the mean, rounding to one decimal place. The number of values is 16. -2), X: n 4,203 16 262.7 seconds b. The median of a data set is the measure of center that is the middle value when the original data values are arranged in order of increasing (or decreasing) magnitude. If there is an even number of data values, the median is the mean of the two middle data values. Arrange the data in order of increasing magnitude. 218 218 228 234 237 242 243 243 246 253 258 259 267 276 293 488 Since the number of data values is even, the median is found by computing the mean of the two middle numbers, 243 and 246. First, add the two middle numbers. 243 +246 = 489I seconds To find the median, divide the sum of the two middle numbers by 2. _ 243 + 246 Medlan = T = 244.5 seconds c. The mode ofa data set is the value that occurs with the greatest frequency. If two or more data values occur with the same greatest frequency, then there are multiple modes. If no data value is repeated, it can be said that there is no mode. Page 1 Student: Grady Sinlonton Course: 1\-Iat11119: Elenlentaiy Statistics - Spring 3010 - C‘RN: 49339 Instructor: Shawn Pan-'ini - 16 weeks Date: 3.-"'18.-"'10 Book: T1‘iola: Elenlentaiy Statistics. Me Time: 11:30 AM Find the frequency of each data value. The data value that has the greatest frequency is the mode. Since two of the data values occur with the same greatest frequency, 2, there are two modes. The two modes are 218 seconds and 243 seconds. (1. The midrange of a data set is the measure of center that is the value midway between the maximum and minimum values in the original data set. It is found by adding the maximum data value to the minimum data value and then dividing the sum by 2, as shown in the formula below. maximum value + minimum value 2 midrange = Find the maximum and minimum values of the data set. The maximum value is 488 seconds and the minimum value is 218 seconds. Add the two values and divide the sum by 2. 488+ 218 midrange = f = 3 53 seconds Arrange the data values and look for an extreme time that is different from the others. Page 3 ...
View Full Document

This note was uploaded on 05/21/2010 for the course MATH 49239 taught by Professor Parvini during the Spring '10 term at Mesa CC.

Page1 / 2

3-2 example7 - Student: Grady Simonton Colu'se:...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online