ch06 - CHAPTER6 TimeValueofMoney Futurevalue Presentvalue...

Info icon This preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
    6-1 CHAPTER 6 Time Value of Money Future value Present value Annuities Rates of return Amortization
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    6-2 Time lines Show the timing of cash flows. Tick marks occur at the end of periods, so  Time 0 is today; Time 1 is the end of the  first period (year, month, etc.) or the  beginning of the second period. CF 0 CF 1 CF 3 CF 2 0 1 2 3 i%
Image of page 2
    6-3 Drawing time lines: $100 lump sum due in 2 years; 3-year $100 ordinary annuity 100 100 100 0 1 2 3 i% 3 year $100 ordinary annuity 100 0 1 2 i% $100 lump sum due in 2 years
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    6-4 Drawing time lines: Uneven cash flow stream;  CF 0  = -$50,  CF 1  = $100, CF 2  = $75, and CF 3  = $50  100 50 75 0 1 2 3 i% -50 Uneven cash flow stream
Image of page 4
    6-5 What is the future value (FV) of an initial  $100 after 3 years, if I/YR = 10%? Finding the FV of a cash flow or series of  cash flows when compound interest is  applied is called compounding. FV can be solved by using the arithmetic,  financial calculator, and spreadsheet  methods. FV = ? 0 1 2 3 10% 100
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    6-6 Solving for FV: The arithmetic method After 1 year: FV 1  = PV ( 1 + i ) = $100 (1.10)       = $110.00 After 2 years: FV 2  = PV ( 1 + i ) = $100 (1.10) 2       =$121.00 After 3 years: FV 3  = PV ( 1 + i ) = $100 (1.10) 3       =$133.10 After n years (general case): FV n  = PV ( 1 + i ) n
Image of page 6
    6-7 Solving for FV: The calculator method Solves the general FV equation. Requires 4 inputs into calculator, and will  solve for the fifth. (Set to P/YR = 1 and  END mode.) INPUTS OUTPUT N I/YR PMT PV FV 3 10 0 133.10 -100
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    6-8 PV = ? 100 What is the present value (PV) of $100  due in 3 years, if I/YR = 10%? Finding the PV of a cash flow or series of  cash flows when compound interest is  applied is called discounting (the reverse of  compounding). The PV shows the value of cash flows in  terms of today’s purchasing power. 0 1 2 3 10%
Image of page 8
    6-9 Solving for PV: The arithmetic method Solve the general FV equation for PV: PV = FV n  / ( 1 + i ) n PV = FV 3  / ( 1 + i ) 3      = $100 / ( 1.10 ) 3      = $75.13
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    6-10 Solving for PV: The calculator method Solves the general FV equation for PV. Exactly like solving for FV, except we  have different input information and are  solving for a different variable. INPUTS OUTPUT N I/YR PMT PV FV 3 10 0 100 -75.13
Image of page 10
    6-11 Solving for N: If sales grow at 20% per year, how long  before sales double? Solves the general FV equation for N.
Image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 12
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern