Math_138__Assignment_3_Solutions

Math_138__Assignment_3_Solutions - MATH 138 SOLUTIONS T0...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 138 SOLUTIONS T0 ASSIGNMENT 3 PAGE 1 Pfifi—L Qdfmfigg OLD Typet m "[39:12, cund dJIanm'ccanu-maf- m Magma e—é mch_hnpnom win.‘ @104. b ‘ 1 3 S f dJ: IS Tflpti , amd. Lb Hm Ana ilin. IE Cit - _ lo I l-l-t‘ b |+£a an m at :- 4‘3’“ - C] I ' 5 1+4? it log-w - 5" 2t t , befiumk. I ‘ J tt “1-: {+tz’ = A; b . W" *2- E’mluefl = g—flmwm Aim. b—aoo s‘r‘flfi- Mll’rb'" —9 +09 ab baa, OJ} maes‘ an . 90‘ t = ell—cit- e') JL__J——-9+tz |9 Type i. 33 W1 £9+£1°L 25$ 9H9. ¢‘ CL-b’: 2 l _ ‘ k ..——-—- . d g 4‘. .L. ._L._-— ‘M in 9+9 inan 9w;z t .2 5‘31 9! 1+ git mmm u ‘ 11- I 2 alnu onc‘ZuhC')-—vg-°D“]L"'°°' P554“ ' . . . . 1 JxQM-szm. “3 Tape. 7.: 5mm. :6 meh—émd. ‘ .-. benxabg z: QL‘m‘r 813nm” ‘ afar ushvadU-gxd”. o =Pda-t=§;d»<, v:- 3&3, _ {\m { XI l I‘ L 2 ’ —- em 1 — S 2‘. .L. a-ym [2 'x a a. 2 x 0le _ Km {0 Q7- 1?- ‘ CL—rO" " E’Q‘V‘O- "' #:50- = _le|m afwa _ __|_ en“ 0: {Eek}? swam) z afio tin-40* 4 . '_ " =0 — JICM Jena 0° o__,,o+ a-z “" = .Qxim V9 ' Ql‘m -O. .— a-vo’r —-2/a‘s CLARE =a.—,¢+ '7: "O cenwxgu 17” "‘ lAg, ' MATH 138 SOLUTIONS TO ASSIGNMENT 3 PAGE 2. 13) "’1 -—v - ' - jam a 1%Pt12mdmfiazmat 91am; 5 (Mafia. hate u 013:0!“- da - L | 5 i _.,l M s “NM 4’3 h... ‘2 | I Ll+3fl ‘ 5 in gym)”- : brfi[§"0+5flyz 5% FTC?) I = .- 2. I a a 3) PLO» :5 mph-.afiam 55 gwfiahew with l E on I 5"”: 11m,“ F112, SI “45% = ififikfilt " if» 2J1; _ 251‘ -—"> 4:06 Mm" Sl—‘w—ott 6» Tapez nénu -‘—«- L): mougué‘mad e=1. o 1.:~l ’ £-I 2 fiqu IVA—gag: {Cm bl (it. + Adm. _"_.oL-l: 0 £-\ b-vl" i—l O--:{"'a £-I ° L , 2. = m_ Emjbql-uernl‘n + %I1\ - um Gala—fl Kb—Lw/ 3%.“; m m T‘s-'rLUueEmf! ' ‘ a: ' . b n) _L—- 1 ‘ T t, s ' ' at 19 4mm - I 01“ 9g “@nx) Obi 1‘5 )PC 0 \5 ELI-8W a ham ejxemflt Tau-D all—ra— = lim k 1.0"" u: an“ dungk. 33 XQQMKEE 54¢» a W36 xflefi’ucd 32:]: ’X -" _. . . - gilwenlg) .- life: 5 fifth EH3 QU—QJ-G‘t‘rH-tlm - 1. PMJo s Aw“ -l __€yw\ .L— - = 53-h» «A: = baa Stank +1 1 (Conwgmy MATH 138 SOLUTIONS T0 ASSIGNMENT 3 PAGE 3 PSB-vfi‘l a“ . , h o.) I @3519 AB (5 TEP‘ l , so out!on ‘05 km {Cog-8A9 T-tHJ-b [ab : ‘9‘. b 2 b-oCfla 04:59:13 a ma. Seesaw wmwmqsh ° 5-H» o , mulla- ‘_ WM In c.9519: Coszsn " Cos'ze \ ‘ bdmg + AB 2 '2- , _ k; = gum [maze + 9,] 13—341: 4- 2 o = 9M nén'a‘a {thyrivflflg 5.”; 4 ’3 4 2 Sm‘u. ism. 3'”th Due Cosc'LLLofCLs tum -\a-vml£) an: ‘ ' . - MA get-fr“ Ea. +93, Tim. mama} 9534*?“ W4.an Companificn mow-Um To ALWW mu. m AN. ‘3" u ID 1 J— .L_ ‘ w: __.l___— J._ 1am 6' [wt she 52. to 4w" > 2“ Shani”) \hu -— := wn _L_GLM= 1' I i .. .L l 2“ been S 25‘ in?“ ‘2 ‘3 1%1—3’10: o M) . It, 5 J—abx awe» , no mo °° ‘ on oxm l 2' w {{J‘l'x‘zl W a) Fan Smgrdt , we. mot: ezt+tl>z e“ W t e “2‘ n e +t‘ A at \F at 4 at = e—‘t o‘e:5+’c"e§E_+t1 “ 31.1: 55‘ tho- ID \a c: S‘fi'a Ee-‘t51t:: Se-tdfc :.- Ee- Jab": Q‘L'm "e- + e =1 O 5-” a 5-H» éiaLr—g Le. 00.1 ‘9 1: ED ' ’ 8 ABC Paw-MQLB, 5‘0 “Q30 j it {:1 ch: aonumano. e + D MATH 138 SOLUTIONS TO ASSIGNMENT 3 i ‘E‘ Q, U “5 £2 0’ .L a 3 (3“ j I 5 f5. “fj—N \:e e. clt- bi,“ a m c __ . 5 =3'2.\ ) Tim Na: mm = M ,T‘CWWZS ‘2 "W‘H..V.0rcms-(WD‘- 3 D e :1 9 MATH 133 SOLUTIONS T0 ASSIGNMENT 3‘ 'PAGE 5 \ 455d) ‘ PS 4. musk f0 &Cn¢i 11. vofiw, summattd. Ema Momma M "Pu n3 Gum's “u. Cunu-L 5:34‘92 J 85-. -aD-C'N: <63. We. choose CKKQLLV‘CLIR’COJ skews as Thx'ckmm Ax} QwigH' I5, amé. finds» x) AN 2 a" 1:3 Ax Swmm'mcz M ME 361 O$x<o°) W12:ng 'Vvu. lbw-LT a.» Ax.,o; c0 . 1 V: ZQTTXLAAX = :urjtxe‘x/zcbx , 0m immopcn. "’0 05 14a» cal b 1 O L 7. ‘ \{= a“ 9mm 8 Ina—"1AM = N am Eta-‘72] chech:adi(.;éx’5) bat Vii-baa -x/ \ , 2 ‘-'.- z - ; ‘b—ytk _Xe /2- I ‘ Burke 6’: 244,0 _ abb‘ii-dfi, u."- %m V =Q1‘i. 51- 5 . K a P 9) anch Sun-s; us“ any.“ a Edi 5 e—td-t . a W of“ 80632“ and am am: . Mote mm gramme». %(o)u\5 b“? I’lcfl‘ci » “ML ‘X‘flfi‘ , so 5‘00 745'be San KHz. Therm; , sfisu .360”): 06(0), 341:) > (5(3) I gm x>o_ 41"? %= *2 5 Hum 1.5:: gm an. 1-4.0 . mu '3‘“ > |+£1 Sn {1):}, *- Miewtt< .1— ’suxcfibD-m H-t‘ 411.1%. 1: g .J_—-d.t Ind a.me “owl “‘99) “‘ z Sfie‘tZLt < 3.. l + 4:“ Componimg l-Mhfiflafln‘ fr? , W— 2 ° " =- q—{f [mdwblo ._._. 3—w-‘JMX ’ x:q. V? Ga 6? FTC-M “{th iii-fie"ml >0 861ML. M 0385371.: meAMan; 57. Letfi, FM“ , ’61:): -49; 4:" >6 §nx<o r “'3 Tare {40 5mm ‘3¢'= 0 {5 o. Péwfi‘ 53 McEfi-m. 1. mem WfoS=£y~fi JE'flu =0. MATH 138 SOLUTIONS TO ASSIGNMENT 3 PAGE 6 CnALLEQGE: L> # Assignment 3 - Problem 8 - A String of Beads E> restart; E> # Plot the graph of y=exp(-0.1*x)*sin(x) on [0,6Pi] > plottexp(-O.l*x)*sin(x),x=0..6*Pi); > # Evaluate the volume of the solid of revolution created by revolving the graph about the x—exis. > int(Pi*exp(-O.2*x)*(sin(x))“2,x=0..6*Pi); 7596945615 > # Define th) as the volume obtained by revolving y=exp(-k*x)*sin(x) ahot the x-axis for {(n—l)Pi,nPi]. PHI > V := n —> int(Pi*exp(—2*k*x}*(sin(x))‘2,x=(n—1)*Pi..n*Pi); V2: n —) 7: e (‘2 kx) sirloc)2 dx menu Mm: 138 SOLUTIONS TO ASSIGNMENT 3 PAGE 3]- l [> # Find V(n) and V(n+1); some simplification is necessary. > V(n); _(-2k2-1+2k2cos(nrr)2-2ksin(nn:)cos(nn'))z(e(2k")-1) calm”) 41:09“) > subs( {cos (n*Pi))"2=1,sin (n*Pi)=O,V(n)); Me(2kx)_l)e(.2knu) 4k(k2+1) > V(n+1); 7r(—2k2-1+21:2cos(mr)2-2ksin(n:r)cos(n7r))(e(2”)-1)“JUN—2”) 4k(k2+l) > subs ( (cos (n*Pi) ) *2=1 ,sin (n*Pi)_=0 ,V(n+1)); 3(e(2kn’)_1)e(-2knx—2kn) 4k(k2+1) [> # Find. the ratio of the volumes of two successive beads, and simplify. T ratio = V(n+1)/V(n); [ > [> # That is, the ratio of successive volumes is constant, which is e(—2nwk—2k1r) rati0= e(—2n:rk) # Note that, after cancelling the two terms exp(-2nkPi) , ratio=exp(-2kPi) which is independent of n. unexpected. > # Thus this ration equals 1/2 if k=ln(2)/(2Pi) . [> # Finally, we find the total volume of an infinite string of such beads. 13 4k(k2+1) [ sum (th) ,n=l . . infinity) ; [> [> ...
View Full Document

{[ snackBarMessage ]}

Page1 / 7

Math_138__Assignment_3_Solutions - MATH 138 SOLUTIONS T0...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online