{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Homework 9 - MarkBiagi Homework#9 Activity2111 A....

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
From Summary Statistics Difference of Proportions Attribute (categorical): unassigned Attribute (categorical or grouping): unassigned Interval estimate of the difference in proportions 663 out of 1036 , or 0.639961 , FirstAttribute are Category . 717 out of 996 , or 0.71988 , SecondAttribute are Category . Confidence level: 99.0 % Estimate: -0.0799181 +/- 0.0530938 Range: -0.133012 to -0.0268243 Mark Biagi Homework #9 Activity 21-11 A. It represents the difference in population proportion of girls who have televisions in their room  and the population proportion of boys who have a television in their room. B. To calculate this interval we do (.64-.72) plus or minus 1.96(square root 2.22E-4 + 2.02E-4) =  -0.8 plus/minus (1.96)(0.0206)  (-.1204, -.0396) You are 95% confident that the proportion of all girls who have televisions in their bedrooms is  somewhere between .0396 and .1204, less than the proportion of all boys who have televisions  in their bedrooms. The fact that all the values in your confidence interval are negative indicates  that the population proportion of girls is strictly less than the population proportion of boys. C.    The midpoint of both intervals is the same (.64 -.72 =.08). The 99% confidence interval is wider  than the 95% confidence interval. Activity 21-19
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
From Summary Statistics Compare Proportions Attribute (categorical): unassigned Attribute (categorical or grouping): unassigned Ho: Population proportion of makes in conventional equals that of makes in underhand Ha: Population proportion of makes in conventional is not equal to that of makes in underhand 63 out of 100 , or 0.63 , in conventional are makes 78 out of 100 , or 0.78 , in underhand are makes z : -2.326 P-value: 0.02 From Summary Statistics Compare Proportions Attribute (categorical): unassigned Attribute (categorical or grouping): unassigned Ho: Population proportion of makes in conventional equals that of makes in underhand Ha: Population proportion of makes in conventional is not equal to that of makes in underhand 315 out of 500 , or 0.63 , in conventional are makes 390 out of 500 , or 0.78 , in underhand are makes z : -5.201 P-value: < 0.0001 a.  The null hypothesis is that Reilly’s probability of successes is the same with both methods of  shooting free throws. In symbols, H 0 :  π  underhand =  π conventional . The alternative  hypothesis is that Reilly’s probability of successes is greater with the underhand method than  with the conventional method. In symbols, H a :    π underhand <  π conventional . b.  You would need to know how many attempts he made with each method. C.  I would expect them to be more significant with 500 attempts rather than 100 attempts.
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern