ME5659_LecNotes_FreqRespTech_1

ME5659_LecNotes_FreqRespTech_1 - 1 Frequency Response...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 Frequency Response Analysis Frequency Response Analysis Analytical Expression for Frequency response Given that a linear timeinvariant system is represented by a transfer function of G ( s ). Let the system input be a sinusoidal motion , i.e., x ( t ) = X sin( t ), where X is the amplitude and is the frequency of the input signal . The Laplace transform of x ( t ) is given by 2 2 ) ( + = s X s X 2 Analytical Expression for Frequency Response Thus, one has the system output as C ( s ) 2 2 ) ( ) ( ) ( ) ( + = = s X s G s R s G s C ( ) ( ) j s j s X s G s C + = ) ( ) ( 3 Analytical Expression for Frequency Response Performing a partial fraction expansion on the above equation ) ( from erms fraction t Partial ) ( 2 1 s G j s K j s K s C + + + = [ ] ) ( 2 ) ( ) ( ) ( 1 j G j X s G j s X S G j s K j s j s = + = = = = [ ] ) ( 2 ) ( ) ( ) ( 2 j G j X s G j s X S G j s K j s j s = = + = = = 4 Analytical Expression for Frequency Response Please note that G ( j ) and G (- j ) are complex numbers. By using the Eulers formula , these two...
View Full Document

This note was uploaded on 05/26/2010 for the course ME 5659 taught by Professor Jalili during the Spring '10 term at Northeastern.

Page1 / 17

ME5659_LecNotes_FreqRespTech_1 - 1 Frequency Response...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online