# 475 answers 4 - ANSWERS PAMPHLET 151 2 c1 b) y y 2 k1 24.15...

This preview shows pages 1–4. Sign up to view the full content.

ANSWERS PAMPHLET 151 2 5 y (0) 5 c 1 ;1 5 ˙ y (0) 52 c 1 1 3 c 2 . c 1 5 2 ,c 2 5 1, so y 5 e 2 t (2 cos 3 t 1 sin 3 t ). b y 1 9 y 5 0; r 2 1 9 5 0 ,r 56 3 i . y 5 k 1 cos 3 t 1 k 2 sin 3 t y 3 k 1 sin 3 t 1 3 k 2 cos 3 t . 2 5 y (0) 5 k 1 ,1 5 ˙ y (0) 5 3 k 2 . k 1 5 2 ,k 2 5 1 3 . y 5 2cos3 t 1 1 3 sin 3 t . 24.15 y 5 e a t ( c 1 cos b t 1 c 2 sin t ) , ˙ y 5 e t [( c 1 1 c 2 )cos t 1 ( c 2 2 c 1 )sin t ] , ¨ y 5 e t [( 2 2 2 ) c 1 1 2 ab c 2 ]cos t 1 e t [( 2 2 2 ) c 2 2 2 c 1 ]sin t. a ¨ y 1 b ˙ y 1 cy 5 e t cos t [ a ( 2 2 2 ) c 1 1 2 a c 2 1 b c 1 1 b c 2 1 cc 1 ] 1 e t sin t [ a ( 2 2 2 ) c 2 2 2 a c 1 1 b c 2 2 b c 1 1 cc 2 ] 5 e t cos t [ c 1 ( a ( 2 2 2 ) 1 b 1 c ) 1 c 2 (2 a 1 b )] 1 e t sin t [ 2 c 1 (2 a 1 b ) 1 c 2 ( a ( 2 2 2 ) 1 b 1 c )] . On the other hand, since r 5 1 i is a root of ar 2 1 br 1 c 5 0, 0 5 a ( 1 i ) 2 1 b ( 1 i ) 1 c 5 [ a ( 2 2 2 ) 1 b 1 c ] 1 (2 a 1 b ) . So a ( 2 2 2 ) 1 b 1 c 5 0and2 a 1 b 5 0. But these are precisely the coefﬁcients of c 1 and c 2 in the previous expres- sion, and so that expression equals zero. 24.16 a )6 ¨ y 2 ˙ y 2 y 5 0, 6 r 2 2 r 2 1 5 (3 r 1 1)(2 r 2 1) 5 0. y 5 k 1 e 2 t 6 3 1 k 2 e t 6 2 y 1 3 k 1 e 2 t 6 3 1 1 2 k 2 e t 6 2 . 1 5 y (0) 5 k 1 1 k 2 ,0 5 ˙ y (0) 1 3 k 1 1 1 2 k 2 . So k 1 5 3 5 2 5 2 5 ;and y 5 3 5 e 2 t 6 3 1 2 5 e t 6 2 . b y 1 y 1 2 y 5 0, r 2 1 2 r 1 2 5 0, r 1 6 i . y 5 e 2 t ( k 1 cos t 1 k 2 sin t ), ˙ y 5 e 2 t [( k 2 2 k 1 t 2 ( k 1 1 k 2 t ]. 1 5 y (0) 5 k 1 5 ˙ y (0) 5 k 2 2 k 1 . So k 1 5 k 2 5 1. y 5 e 2 t (cos t 1 sin t ).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
152 MATHEMATICS FOR ECONOMISTS c )4 ¨ y 2 y 1 y 5 0, 4 r 2 2 4 r 1 1 5 (2 r 2 1) 2 5 0. y 5 k 1 e t 6 2 1 k 2 te t 6 2 y 5 1 2 k 1 e t 6 2 1 k 2 e t 6 2 1 1 2 k 2 te t 6 2 . 1 5 y (0) 5 k 1 ,0 5 ˙ y (0) 5 1 2 k 1 1 k 2 = k 1 5 1 ,k 2 52 1 2 . y ( t ) 5 e t 6 2 2 1 2 te t 6 2 . d y 1 y 1 6 y 5 0, r 2 1 5 r 1 6 5 ( r 1 3)( r 1 2) 5 0. y 5 k 1 e 2 3 t 1 k 2 e 2 2 t y 3 k 1 e 2 3 t 2 2 k 2 e 2 2 t . 1 5 y (0) 5 k 1 1 k 2 5 ˙ y (0) 3 k 1 2 2 k 2 = k 1 2 2 5 3. y 2 e 2 3 t 1 3 e 2 2 t . e y 2 y 1 9 y 5 0, r 2 2 6 r 1 9 5 ( r 2 3) 2 5 0. y 5 k 1 e 3 t 1 k 2 te 3 t y 5 3 k 1 e 3 t 1 k 2 e 3 t 1 3 k 2 te 3 t . 1 5 y (0) 5 k 1 5 ˙ y (0) 5 3 k 1 1 k 2 = k 1 5 1 2 3. y 5 e 3 t 2 3 te 3 t . f y 1 ˙ y 1 y 5 0, r 2 1 r 1 1 5 0, r 1 2 6 i p 3 2 . y 5 e 2 t 6 2 ˆ k 1 cos p 3 2 t 1 k 2 sin p 3 2 t ! ˙ y 5 e 2 t 6 2 ˆ 2 k 1 2 cos p 3 2 t 1 k 2 p 3 2 cos p 3 2 t 2 k 2 2 sin p 3 2 t 2 k 1 p 3 2 sin p 3 2 t ! . 1 5 y (0) 5 k 1 5 ˙ y (0) k 1 2 1 k 2 p 3 2 = k 1 5 1 2 5 1 6 p 3. y 5 e 2 t 6 2 ˆ cos p 3 2 1 1 p 3 sin p 3 2 t ! . 24.17 y [3] 2 y 2 ˙ y 1 2 y 5 0. Look for the solution y 5 e rt . e rt ( r 3 2 2 r 2 2 r 1 2) 5 0 . ( r 2 1)( r 1 1)( r 2 2) 5 0 = r 5 1 , 2 1 , 2 . y 5 k 1 e t 1 k 2 e 2 t 1 k 3 e 2 t . 24.18 y 5 Ae 2 t y Ae 2 t y 5 Ae 2 t . ¨ y 2 y 2 3 y 5 Ae 2 t 1 2 Ae 2 t 2 3 Ae 2 t ; 0 , but ¨ y 2 y 2 3 y must equal 8 e 2 t .
ANSWERS PAMPHLET 153 24.19 a y 2 y 2 y 5 7 . For the general solution of the homogeneous equation: r 2 2 2 r 2 1 5 0 = r 5 1 6 p 2.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 05/26/2010 for the course ECON 475 taught by Professor Voyvoda during the Spring '10 term at Middle East Technical University.

### Page1 / 50

475 answers 4 - ANSWERS PAMPHLET 151 2 c1 b) y y 2 k1 24.15...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online