{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

transistor-1

transistor-1 - V Transistors 3.1 III Bipolar-Junction(BJT...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
V. Transistors 3.1 III. Bipolar-Junction (BJT) Transistors A bipolar junction transistor is formed by joining three sections of semiconductors with alternatively different dopings. The middle section (base) is narrow and one of the other two regions (emitter) is heavily doped. Two variants of BJT are possible: NPN and PNP. B B C E C C E B E NPN Transistor n p + n Circuit Symbols B C E C C B E B E n p Circuit Symbols + PNP Transistor p We will focus on NPN BJTs. Operation of a PNP transistor is analogous to that of a NPN transistor except that the role of “majority” charge carries reversed. In NPN transistors, electron flow is dominant while PNP transistors rely mostly on the flow of “holes.” Therefore, to zeroth order, NPN and PNP transistors behave similarly except the sign of current and voltages are reversed. i.e., PNP = NPN ! In practice, NPN transistors are much more popular than PNP transistors because electrons move faster in a semiconductor. As a results, a NPN transistor has a faster response time compared to a PNP transistor. At the first glance, a BJT looks like 2 diodes placed back to back. Indeed this is the case if we apply voltage to only two of the three terminals, letting the third terminal float. This is also the way that we check if a transistor is working: use an ohm-meter to ensure both diodes are in working conditions. (One should also check the resistance between CE terminals and read a vary high resistance as one may have a burn through the base connecting collector and emitter.) The behavior of the BJT is different, however, when voltage sources are attached to both BE and CE terminals. The BE junction acts like a diode. When this junction is forward biased, electrons flow from emitter to the base (and a small current of holes from base to emitter). The base region is narrow and when a voltage is applied between collector and emitter, most of the electrons that were flowing from emitter to base, cross the narrow base region and are collected at the collector region. So while the BC junction is reversed biased, a large current can flow through that region and BC junction does not act as a diode. The amount of the current that crosses from emitter to collector region depends strongly on the voltage applied to the BE junction, v BE . (It also depends weakly on voltage applied ECE65 Lecture Notes (F. Najmabadi), Fall 2009 63
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
between collector and emitter, v CE .) As such, small changes in v BE or i B controls a much larger collector current i C . Note that the transistor does not generate i C . It acts as a valve controlling the current that can flow through it. The source of current (and power) is the power supply that feeds the CE terminals. B i i E v BE v CE v CB i C - + - + - + A BJT has three terminals. Six parameters; i C , i B , i E , v CE , v BE , and v CB ; define the state of the transistor. However, because BJT has three terminals, KVL and KCL should hold for these terminals, i.e., i E = i C + i B v BC = v BE v CE Thus, only four of these 6 parameters are independent parameters. The relationship among
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern