kmeans_clusters - err(vector squared sum of errors for each...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
SOM Toolbox Online documentation kmeans_clusters [centers,clusters,errors,ind] = kmeans_clusters(sD, n_max, c_max, verbose) KMEANS_CLUSTERS Clustering with k-means with different values for k. [c, p, err, ind] = kmeans_clusters(sD, [n_max], [c_max], [verbose]) [c, p, err, ind] = kmeans_clusters(sD); Input and output arguments ([]'s are optional): D (struct) map or data struct (matrix) size dlen x dim, the data [n_max] (scalar) maximum number of clusters, default is sqrt(dlen) [c_max] (scalar) maximum number of k-means runs, default is 5 [verbose] (scalar) verbose level, 0 by default c (cell array) c{i} contains cluster centroids for k=i p (cell array) p{i} contains cluster indeces for k=i
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: err (vector) squared sum of errors for each value of k ind (vector) Davies-Bouldin index value for each clustering Makes a k-means to the given data set with different values of k. The k-means is run multiple times for each k, and the best of these is selected based on sum of squared errors. Finally, the Davies-Bouldin index is calculated for each clustering. For example to cluster a SOM: [c, p, err, ind] = kmeans_clusters(sM); % find clusterings [dummy,i] = min(ind); % select the one with smallest index som_show(sM,'color',{p{i},sprintf('%d clusters',i)}); % visualize colormap(jet(i)), som_recolorbar % change colormap See also SOM_KMEANS. [ SOM Toolbox online doc ]...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online