section3.4

# section3.4 - Contents I Probability 5 7 8 8 14 21 34 59 59...

This preview shows pages 1–13. Sign up to view the full content.

Contents I Probability 5 1 Sets and Probability 7 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.1 Basic Deﬁnitions . . . . . . . . . . . . . . . . . . . . . 8 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 14 1.1.3 Proportions . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2 Counting Techniques . . . . . . . . . . . . . . . . . . . . . . . 34 1.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 1.3.1 Random Experiments, Sample Spaces and Events . . . 59 1.3.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . 65 1.4 Conditional Proportions and Probabilities . . . . . . . . . . . 84 1.4.1 Conditional Proportions . . . . . . . . . . . . . . . . . 84 1.4.2 Conditional Probabilities . . . . . . . . . . . . . . . . 87 1.4.3 Multiplicative Rule . . . . . . . . . . . . . . . . . . . . 91 1.4.4 Independence . . . . . . . . . . . . . . . . . . . . . . . 92 1.5 Compound Experiments . . . . . . . . . . . . . . . . . . . . . 107 1.5.1 Finding Probabilities and Conditional Probabilities in Compound Experiments . . . . . . . . . . . . . . . . . 108 1.5.2 Notation for Events in Compound Experiments . . . . 117 1.5.3 Using the Multiplicative Rule to Find Probabilities in Compound Experiments . . . . . . . . . . . . . . . . . 119 1.5.4 More Examples . . . . . . . . . . . . . . . . . . . . . . 124 1.6 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 145 2 Variables 163 2.1 Variables and their Distributions . . . . . . . . . . . . . . . . 164 2.1.1 Basic Deﬁnitions of Variables and Random Variables . 164 2.1.2 Classifying Variables . . . . . . . . . . . . . . . . . . . 168 2.1.3 Distributions of Variables and Random Variables . . . 169 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 CONTENTS 2.1.4 Distributions of Categorical Variables . . . . . . . . . 170 2.1.5 Distributions of Numerical Discrete Variables . . . . . 175 2.1.6 Distributions of Numerical Continuous Variables . . . 180 2.1.7 Experimental Distributions . . . . . . . . . . . . . . . 191 2.2 Percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 2.3 Mean and Standard Deviation . . . . . . . . . . . . . . . . . . 215 2.3.1 The Mean . . . . . . . . . . . . . . . . . . . . . . . . . 215 2.3.2 Variance and Standard Deviation . . . . . . . . . . . . 225 2.4 Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . 241 2.5 Conditional Distributions and Independence . . . . . . . . . . 259 2.5.1 Conditional Distributions . . . . . . . . . . . . . . . . 259 2.5.2 Independence . . . . . . . . . . . . . . . . . . . . . . . 264 2.5.3 Interpreting Scatterplots . . . . . . . . . . . . . . . . . 267 2.6 Covariance and Correlation . . . . . . . . . . . . . . . . . . . 277 2.6.1 Covariance . . . . . . . . . . . . . . . . . . . . . . . . 277 2.6.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . 281 2.6.3 Observations and Properties of Correlation . . . . . . 287 2.7 Combining Variables . . . . . . . . . . . . . . . . . . . . . . . 299 2.7.1 Y = f ( X ) . . . . . . . . . . . . . . . . . . . . . . . . . 299 2.7.2 W = f ( X,Y ) . . . . . . . . . . . . . . . . . . . . . . . 305 2.7.3 Sums of Many Variables . . . . . . . . . . . . . . . . . 313 2.7.4 Portfolio Analysis . . . . . . . . . . . . . . . . . . . . 314 3 Important Families of Distributions 325 3.1 Using Distributions to Find Probabilities . . . . . . . . . . . 326 3.2 Binomial and Hypergeometric Distributions . . . . . . . . . . 329 3.2.1 The Binomial Distribution . . . . . . . . . . . . . . . . 329 3.2.2 The Hypergeometric Distribution . . . . . . . . . . . . 337 3.2.3 Proportions of Successes . . . . . . . . . . . . . . . . . 344 3.2.4 The Binomial Distribution as an Approximation to the Hypergeometric Distribution . . . . . . . . . . . . 346 3.3 The Poisson and Exponential Distributions . . . . . . . . . . 356 3.3.1 Poisson Processes . . . . . . . . . . . . . . . . . . . . . 356 3.3.2 Poisson Distributions . . . . . . . . . . . . . . . . . . . 357 3.3.3 Exponential Distributions . . . . . . . . . . . . . . . . 363 3.4 The Uniform and Normal Distributions . . . . . . . . . . . . 373 3.4.1 Uniform Distributions . . . . . . . . . . . . . . . . . . 373 3.4.2 Normal Distributions . . . . . . . . . . . . . . . . . . . 376 3.5 Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . 400 3.5.1 Mean and Standard Deviation of Σ X and ¯ X . . . . . 402
CONTENTS 3 3.5.2 Complete Distribution of Σ X and ¯ X . . . . . . . . . . 404 3.5.3 The Normal Approximation to the Binomial Distribu- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 3.5.4 Normal Approximation to the Poisson Distribution . . 418 II Statistics 425 4 Estimation 427 4.1 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 400 4.1.1 Parameters, Statistics and Point Estimators . . . . . . 400 4.1.2 Assessing the Quality of a Point Estimator . . . . . . 402 4.1.3 Point Estimators for Common Parameters . . . . . . . 406 4.2 Introduction to Interval Estimation . . . . . . . . . . . . . . . 415 4.2.1 Guiding Example and Deﬁnition . . . . . . . . . . . . 415 4.2.2 Conﬁdence Interval for μ when σ is Known . . . . . . 420 4.2.3 Determining the Sample Size . . . . . . . . . . . . . . 423 4.2.4 A Closer Look at Conﬁdence Intervals . . . . . . . . . 424 4.3 More Conﬁdence Intervals . . . . . . . . . . . . . . . . . . . . 428 4.3.1 Estimating μ when σ is not known. . . . . . . . . . . . 428 4.3.2 Estimating a population proportion, p . . . . . . . . . . 436 5 Hypothesis Testing 445

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 CONTENTS
Part I Probability 5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Chapter 1 Sets and Probability 7

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
162 CHAPTER 1. SETS AND PROBABILITY
Chapter 2 Variables 163

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
324 CHAPTER 2. VARIABLES
Chapter 3 Important Families of Distributions 325

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3.4. THE UNIFORM AND NORMAL DISTRIBUTIONS
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 05/30/2010 for the course MATH 218 taught by Professor Haskell during the Spring '06 term at USC.

### Page1 / 43

section3.4 - Contents I Probability 5 7 8 8 14 21 34 59 59...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online