section3.4

section3.4 - Contents I Probability 5 7 8 8 14 21 34 59 59...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Contents I Probability 5 1 Sets and Probability 7 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 8 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 14 1.1.3 Proportions . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2 Counting Techniques . . . . . . . . . . . . . . . . . . . . . . . 34 1.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 1.3.1 Random Experiments, Sample Spaces and Events . . . 59 1.3.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . 65 1.4 Conditional Proportions and Probabilities . . . . . . . . . . . 84 1.4.1 Conditional Proportions . . . . . . . . . . . . . . . . . 84 1.4.2 Conditional Probabilities . . . . . . . . . . . . . . . . 87 1.4.3 Multiplicative Rule . . . . . . . . . . . . . . . . . . . . 91 1.4.4 Independence . . . . . . . . . . . . . . . . . . . . . . . 92 1.5 Compound Experiments . . . . . . . . . . . . . . . . . . . . . 107 1.5.1 Finding Probabilities and Conditional Probabilities in Compound Experiments . . . . . . . . . . . . . . . . . 108 1.5.2 Notation for Events in Compound Experiments . . . . 117 1.5.3 Using the Multiplicative Rule to Find Probabilities in Compound Experiments . . . . . . . . . . . . . . . . . 119 1.5.4 More Examples . . . . . . . . . . . . . . . . . . . . . . 124 1.6 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 145 2 Variables 163 2.1 Variables and their Distributions . . . . . . . . . . . . . . . . 164 2.1.1 Basic Definitions of Variables and Random Variables . 164 2.1.2 Classifying Variables . . . . . . . . . . . . . . . . . . . 168 2.1.3 Distributions of Variables and Random Variables . . . 169 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 CONTENTS 2.1.4 Distributions of Categorical Variables . . . . . . . . . 170 2.1.5 Distributions of Numerical Discrete Variables . . . . . 175 2.1.6 Distributions of Numerical Continuous Variables . . . 180 2.1.7 Experimental Distributions . . . . . . . . . . . . . . . 191 2.2 Percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 2.3 Mean and Standard Deviation . . . . . . . . . . . . . . . . . . 215 2.3.1 The Mean . . . . . . . . . . . . . . . . . . . . . . . . . 215 2.3.2 Variance and Standard Deviation . . . . . . . . . . . . 225 2.4 Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . 241 2.5 Conditional Distributions and Independence . . . . . . . . . . 259 2.5.1 Conditional Distributions . . . . . . . . . . . . . . . . 259 2.5.2 Independence . . . . . . . . . . . . . . . . . . . . . . . 264 2.5.3 Interpreting Scatterplots . . . . . . . . . . . . . . . . . 267 2.6 Covariance and Correlation . . . . . . . . . . . . . . . . . . . 277 2.6.1 Covariance . . . . . . . . . . . . . . . . . . . . . . . . 277 2.6.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . 281 2.6.3 Observations and Properties of Correlation . . . . . . 287 2.7 Combining Variables . . . . . . . . . . . . . . . . . . . . . . . 299 2.7.1 Y = f ( X ) . . . . . . . . . . . . . . . . . . . . . . . . . 299 2.7.2 W = f ( X,Y ) . . . . . . . . . . . . . . . . . . . . . . . 305 2.7.3 Sums of Many Variables . . . . . . . . . . . . . . . . . 313 2.7.4 Portfolio Analysis . . . . . . . . . . . . . . . . . . . . 314 3 Important Families of Distributions 325 3.1 Using Distributions to Find Probabilities . . . . . . . . . . . 326 3.2 Binomial and Hypergeometric Distributions . . . . . . . . . . 329 3.2.1 The Binomial Distribution . . . . . . . . . . . . . . . . 329 3.2.2 The Hypergeometric Distribution . . . . . . . . . . . . 337 3.2.3 Proportions of Successes . . . . . . . . . . . . . . . . . 344 3.2.4 The Binomial Distribution as an Approximation to the Hypergeometric Distribution . . . . . . . . . . . . 346 3.3 The Poisson and Exponential Distributions . . . . . . . . . . 356 3.3.1 Poisson Processes . . . . . . . . . . . . . . . . . . . . . 356 3.3.2 Poisson Distributions . . . . . . . . . . . . . . . . . . . 357 3.3.3 Exponential Distributions . . . . . . . . . . . . . . . . 363 3.4 The Uniform and Normal Distributions . . . . . . . . . . . . 373 3.4.1 Uniform Distributions . . . . . . . . . . . . . . . . . . 373 3.4.2 Normal Distributions . . . . . . . . . . . . . . . . . . . 376 3.5 Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . 400 3.5.1 Mean and Standard Deviation of Σ X and ¯ X . . . . . 402
Background image of page 2
CONTENTS 3 3.5.2 Complete Distribution of Σ X and ¯ X . . . . . . . . . . 404 3.5.3 The Normal Approximation to the Binomial Distribu- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 3.5.4 Normal Approximation to the Poisson Distribution . . 418 II Statistics 425 4 Estimation 427 4.1 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 400 4.1.1 Parameters, Statistics and Point Estimators . . . . . . 400 4.1.2 Assessing the Quality of a Point Estimator . . . . . . 402 4.1.3 Point Estimators for Common Parameters . . . . . . . 406 4.2 Introduction to Interval Estimation . . . . . . . . . . . . . . . 415 4.2.1 Guiding Example and Definition . . . . . . . . . . . . 415 4.2.2 Confidence Interval for μ when σ is Known . . . . . . 420 4.2.3 Determining the Sample Size . . . . . . . . . . . . . . 423 4.2.4 A Closer Look at Confidence Intervals . . . . . . . . . 424 4.3 More Confidence Intervals . . . . . . . . . . . . . . . . . . . . 428 4.3.1 Estimating μ when σ is not known. . . . . . . . . . . . 428 4.3.2 Estimating a population proportion, p . . . . . . . . . . 436 5 Hypothesis Testing 445
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 CONTENTS
Background image of page 4
Part I Probability 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Chapter 1 Sets and Probability 7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
162 CHAPTER 1. SETS AND PROBABILITY
Background image of page 8
Chapter 2 Variables 163
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
324 CHAPTER 2. VARIABLES
Background image of page 10
Chapter 3 Important Families of Distributions 325
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
3.4. THE UNIFORM AND NORMAL DISTRIBUTIONS
Background image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/30/2010 for the course MATH 218 taught by Professor Haskell during the Spring '06 term at USC.

Page1 / 43

section3.4 - Contents I Probability 5 7 8 8 14 21 34 59 59...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online