Ee1034aS10

# Ee1034aS10 - A Review of Basic Linear Algebra EE103 SLIDES...

This preview shows pages 1–8. Sign up to view the full content.

A Review of Basic Linear Algebr A Review of Basic Linear Algebra EE103 SLIDES 4A (SEJ) 1 The Matrix Inverse, and its Non Use 11 1 12 2 1 1 nn ax ax ax b   ... ................................. 11 1 n n ax b .............. A x b 1 If has an inverse A xA b I Not for computation! f has an invers ! e EE103 SLIDES 4A (SEJ) 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
The Matrix Inverse, and its Non Use 12 ( 1 , 0 ,, 0 ) ' , ( 0 , 1 , 0 0 ) ' ( 0 0 , 1 ) ' n ee e   1 i A xe i n , , ..., n xx x [, , . . . , ] 1 1 nn n nxn A x A x A x e e I [ , ,..., ] [ ] [ ] EE103 SLIDES 4A (SEJ) 3 Examples fxx x f n 112 0 0 ,,, b g x 1 2 2 2 3 2 9 1  x x x n 212 b g x x x x 123 1 2 3 2 0  x 0 b g 00 0 0 T        0 11 1 f x f x f x    , n x x       0 22 2 f x f x f x 0 n f x f x f x EE103 SLIDES 4A (SEJ) 4
Examples      00 0 11 0 0 0 fx fx xx xx  0 0 (1, 2,1) ( ) (242 ) x       22 0 1 0 2 0 ()( 2 , 4, 2) 3 , 1 , 2 )      0 nn f xf x x x 0 () 3 1 , 1, 2) f x       0    1 2 24 2 1 3 31 2 2 1 x x   0 3 11 2 1 2 x   EE103 SLIDES 4A (SEJ) 5 0 y f J x yf x 1 2 3 1 y y 100 xxy  3 2 y T   0 1.2143, 0.9286, 0.8571 y   1 0.2143 , 2.9286, 1.8571 T x EE103 SLIDES 4A (SEJ) 6

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Examples: Polynomial Interpolation and Approximation [x y] = 1 1 2 -2 3 -4 43 4 3 5 -4 6 1 7 2 7 -2 8 9 EE103 SLIDES 4A (SEJ) 7 Polynomial Interpolation and Approximation () 1 bt i i th ,1 , , 1 ii xyi n m n  ( , ), ,, nobservations x y n degree algebraicpolynomial m  ? 11 1 1 0 1 ? m m m px ax ax a y y    22 1 2 0 2 m ? 10 m nm n n n y The variables are: , mm aa a EE103 SLIDES 4A (SEJ) 8
Polynomial Interpolation and Approximation 1. If mn  1 , there are typically many solutions 2. If  1 , there generally will be no solution. 3. If  1 (a square system), there is, under nonsingularity, a unique solution. 12 11 1 1 1 nn n a y x xx   22 2 1 n ay x   0 1 n n x  EE103 SLIDES 4A (SEJ) 9 Polynomial Interpolation and Approximation ? ,1 , , 1 ii m xyi n m n px ax ax a y     1 1 0 1 ? 1 2 0 2 m m m y ? m y   10 nm n n n 1 variables n linear equations in m more rows than columns EE103 SLIDES 4A (SEJ) 10

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Least Squares : ,x , The latter is a linear system of the form Ax b A is m n and m n  Schematically       EE103 SLIDES 4A (SEJ) 11  Example: Linear Least Squares Ax b m n e x Ax b () | | ( ) | | ex Ax b Ax b t 2 2 m i n | | ( ) | | m i n x x t 2 2 Expanding the term on the right hand side, we have min 2 tt t t x xAAx bAx bb  EE103 SLIDES 4A (SEJ) 12
Example: Linear Least Squares

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 06/01/2010 for the course EE EE 103 taught by Professor Jacobsen during the Spring '09 term at UCLA.

### Page1 / 24

Ee1034aS10 - A Review of Basic Linear Algebra EE103 SLIDES...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online